1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
import argparse
import importlib.util
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import torch
from .test.configs.test_config import CommonConfig
SEED_VAL = 42
DNN_LIB = "DNN"
# common path for model savings
MODEL_PATH_ROOT = os.path.join(CommonConfig().output_data_root_dir, "{}/models")
def get_full_model_path(lib_name, model_full_name):
model_path = MODEL_PATH_ROOT.format(lib_name)
return {
"path": model_path,
"full_path": os.path.join(model_path, model_full_name)
}
def plot_acc(data_list, experiment_name):
plt.figure(figsize=[8, 6])
plt.plot(data_list[:, 0], "r", linewidth=2.5, label="Original Model")
plt.plot(data_list[:, 1], "b", linewidth=2.5, label="Converted DNN Model")
plt.xlabel("Iterations ", fontsize=15)
plt.ylabel("Time (ms)", fontsize=15)
plt.title(experiment_name, fontsize=15)
plt.legend()
full_path_to_fig = os.path.join(CommonConfig().output_data_root_dir, experiment_name + ".png")
plt.savefig(full_path_to_fig, bbox_inches="tight")
def get_final_summary_info(general_quality_metric, general_inference_time, metric_name):
general_quality_metric = np.array(general_quality_metric)
general_inference_time = np.array(general_inference_time)
summary_line = "===== End of processing. General results:\n"
"\t* mean {} for the original model: {}\t"
"\t* mean time (min) for the original model inferences: {}\n"
"\t* mean {} for the DNN model: {}\t"
"\t* mean time (min) for the DNN model inferences: {}\n".format(
metric_name, np.mean(general_quality_metric[:, 0]),
np.mean(general_inference_time[:, 0]) / 60000,
metric_name, np.mean(general_quality_metric[:, 1]),
np.mean(general_inference_time[:, 1]) / 60000,
)
return summary_line
def set_common_reproducibility():
random.seed(SEED_VAL)
np.random.seed(SEED_VAL)
def set_pytorch_env():
set_common_reproducibility()
torch.manual_seed(SEED_VAL)
torch.set_printoptions(precision=10)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(SEED_VAL)
torch.backends.cudnn_benchmark_enabled = False
torch.backends.cudnn.deterministic = True
def set_tf_env(is_use_gpu=True):
set_common_reproducibility()
tf.random.set_seed(SEED_VAL)
os.environ["TF_DETERMINISTIC_OPS"] = "1"
if tf.config.list_physical_devices("GPU") and is_use_gpu:
gpu_devices = tf.config.list_physical_devices("GPU")
tf.config.experimental.set_visible_devices(gpu_devices[0], "GPU")
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
os.environ["TF_USE_CUDNN"] = "1"
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
def str_bool(input_val):
if input_val.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif input_val.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value was expected')
def get_formatted_model_list(model_list):
note_line = 'Please, choose the model from the below list:\n'
spaces_to_set = ' ' * (len(note_line) - 2)
return note_line + ''.join([spaces_to_set, '{} \n'] * len(model_list)).format(*model_list)
def model_str(model_list):
def type_model_list(input_val):
if input_val.lower() in model_list:
return input_val.lower()
else:
raise argparse.ArgumentTypeError(
'The model is currently unavailable for test.\n' +
get_formatted_model_list(model_list)
)
return type_model_list
def get_test_module(test_module_name, test_module_path):
module_spec = importlib.util.spec_from_file_location(test_module_name, test_module_path)
test_module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(test_module)
module_spec.loader.exec_module(test_module)
return test_module
def create_parser():
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"--test",
type=str_bool,
help="Define whether you'd like to run the model with OpenCV for testing.",
default=False
),
parser.add_argument(
"--default_img_preprocess",
type=str_bool,
help="Define whether you'd like to preprocess the input image with defined"
" PyTorch or TF functions for model test with OpenCV.",
default=False
),
parser.add_argument(
"--evaluate",
type=str_bool,
help="Define whether you'd like to run evaluation of the models (ex.: TF vs OpenCV networks).",
default=True
)
return parser
def create_extended_parser(model_list):
parser = create_parser()
parser.add_argument(
"--model_name",
type=model_str(model_list=model_list),
help="\nDefine the model name to test.\n" +
get_formatted_model_list(model_list),
required=True
)
return parser
|