File: paddle_resnet50.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (61 lines) | stat: -rw-r--r-- 1,746 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import paddle
import paddlehub as hub
import paddlehub.vision.transforms as T
import cv2 as cv
import numpy as np


def preprocess(image_path):
    ''' preprocess input image file to np.ndarray

    Args:
        image_path(str): Path of input image file

    Returns:
        ProcessedImage(numpy.ndarray): A numpy.ndarray
                variable which shape is (1, 3, 224, 224)
    '''
    transforms = T.Compose([
        T.Resize((256, 256)),
        T.CenterCrop(224),
        T.Normalize(mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225])],
        to_rgb=True)
    return np.expand_dims(transforms(image_path), axis=0)


def export_onnx_resnet50(save_path):
    ''' export PaddlePaddle model to ONNX format

    Args:
        save_path(str): Path to save exported ONNX model

    Returns:
        None
    '''
    model = hub.Module(name="resnet50_vd_imagenet_ssld")
    input_spec = paddle.static.InputSpec(
        [1, 3, 224, 224], "float32", "image")
    paddle.onnx.export(model, save_path,
                       input_spec=[input_spec],
                       opset_version=10)


if __name__ == '__main__':
    save_path = './resnet50'
    image_file = './data/cat.jpg'
    labels = open('./data/labels.txt').read().strip().split('\n')
    model = export_onnx_resnet50(save_path)

    # load resnet50 use cv.dnn
    net = cv.dnn.readNetFromONNX(save_path + '.onnx')
    # read and preprocess image file
    im = preprocess(image_file)
    # inference
    net.setInput(im)
    result = net.forward(['save_infer_model/scale_0.tmp_0'])
    # post process
    class_id = np.argmax(result[0])
    label = labels[class_id]
    print("Image: {}".format(image_file))
    print("Predict Category: {}".format(label))