File: face_detect.cpp

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (282 lines) | stat: -rw-r--r-- 10,705 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/objdetect.hpp>

#include <iostream>

using namespace cv;
using namespace std;

static
void visualize(Mat& input, int frame, Mat& faces, double fps, int thickness = 2)
{
    std::string fpsString = cv::format("FPS : %.2f", (float)fps);
    if (frame >= 0)
        cout << "Frame " << frame << ", ";
    cout << "FPS: " << fpsString << endl;
    for (int i = 0; i < faces.rows; i++)
    {
        // Print results
        cout << "Face " << i
             << ", top-left coordinates: (" << faces.at<float>(i, 0) << ", " << faces.at<float>(i, 1) << "), "
             << "box width: " << faces.at<float>(i, 2)  << ", box height: " << faces.at<float>(i, 3) << ", "
             << "score: " << cv::format("%.2f", faces.at<float>(i, 14))
             << endl;

        // Draw bounding box
        rectangle(input, Rect2i(int(faces.at<float>(i, 0)), int(faces.at<float>(i, 1)), int(faces.at<float>(i, 2)), int(faces.at<float>(i, 3))), Scalar(0, 255, 0), thickness);
        // Draw landmarks
        circle(input, Point2i(int(faces.at<float>(i, 4)), int(faces.at<float>(i, 5))), 2, Scalar(255, 0, 0), thickness);
        circle(input, Point2i(int(faces.at<float>(i, 6)), int(faces.at<float>(i, 7))), 2, Scalar(0, 0, 255), thickness);
        circle(input, Point2i(int(faces.at<float>(i, 8)), int(faces.at<float>(i, 9))), 2, Scalar(0, 255, 0), thickness);
        circle(input, Point2i(int(faces.at<float>(i, 10)), int(faces.at<float>(i, 11))), 2, Scalar(255, 0, 255), thickness);
        circle(input, Point2i(int(faces.at<float>(i, 12)), int(faces.at<float>(i, 13))), 2, Scalar(0, 255, 255), thickness);
    }
    putText(input, fpsString, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 2);
}

int main(int argc, char** argv)
{
    CommandLineParser parser(argc, argv,
        "{help  h           |            | Print this message}"
        "{image1 i1         |            | Path to the input image1. Omit for detecting through VideoCapture}"
        "{image2 i2         |            | Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm}"
        "{video v           | 0          | Path to the input video}"
        "{scale sc          | 1.0        | Scale factor used to resize input video frames}"
        "{fd_model fd       | face_detection_yunet_2021dec.onnx| Path to the model. Download yunet.onnx in https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet}"
        "{fr_model fr       | face_recognition_sface_2021dec.onnx | Path to the face recognition model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface}"
        "{score_threshold   | 0.9        | Filter out faces of score < score_threshold}"
        "{nms_threshold     | 0.3        | Suppress bounding boxes of iou >= nms_threshold}"
        "{top_k             | 5000       | Keep top_k bounding boxes before NMS}"
        "{save s            | false      | Set true to save results. This flag is invalid when using camera}"
    );
    if (parser.has("help"))
    {
        parser.printMessage();
        return 0;
    }

    String fd_modelPath = parser.get<String>("fd_model");
    String fr_modelPath = parser.get<String>("fr_model");

    float scoreThreshold = parser.get<float>("score_threshold");
    float nmsThreshold = parser.get<float>("nms_threshold");
    int topK = parser.get<int>("top_k");

    bool save = parser.get<bool>("save");
    float scale = parser.get<float>("scale");

    double cosine_similar_thresh = 0.363;
    double l2norm_similar_thresh = 1.128;

    //! [initialize_FaceDetectorYN]
    // Initialize FaceDetectorYN
    Ptr<FaceDetectorYN> detector = FaceDetectorYN::create(fd_modelPath, "", Size(320, 320), scoreThreshold, nmsThreshold, topK);
    //! [initialize_FaceDetectorYN]

    TickMeter tm;

    // If input is an image
    if (parser.has("image1"))
    {
        String input1 = parser.get<String>("image1");
        Mat image1 = imread(samples::findFile(input1));
        if (image1.empty())
        {
            std::cerr << "Cannot read image: " << input1 << std::endl;
            return 2;
        }

        int imageWidth = int(image1.cols * scale);
        int imageHeight = int(image1.rows * scale);
        resize(image1, image1, Size(imageWidth, imageHeight));
        tm.start();

        //! [inference]
        // Set input size before inference
        detector->setInputSize(image1.size());

        Mat faces1;
        detector->detect(image1, faces1);
        if (faces1.rows < 1)
        {
            std::cerr << "Cannot find a face in " << input1 << std::endl;
            return 1;
        }
        //! [inference]

        tm.stop();
        // Draw results on the input image
        visualize(image1, -1, faces1, tm.getFPS());

        // Save results if save is true
        if (save)
        {
            cout << "Saving result.jpg...\n";
            imwrite("result.jpg", image1);
        }

        // Visualize results
        imshow("image1", image1);
        pollKey();  // handle UI events to show content

        if (parser.has("image2"))
        {
            String input2 = parser.get<String>("image2");
            Mat image2 = imread(samples::findFile(input2));
            if (image2.empty())
            {
                std::cerr << "Cannot read image2: " << input2 << std::endl;
                return 2;
            }

            tm.reset();
            tm.start();
            detector->setInputSize(image2.size());

            Mat faces2;
            detector->detect(image2, faces2);
            if (faces2.rows < 1)
            {
                std::cerr << "Cannot find a face in " << input2 << std::endl;
                return 1;
            }
            tm.stop();
            visualize(image2, -1, faces2, tm.getFPS());
            if (save)
            {
                cout << "Saving result2.jpg...\n";
                imwrite("result2.jpg", image2);
            }
            imshow("image2", image2);
            pollKey();

            //! [initialize_FaceRecognizerSF]
            // Initialize FaceRecognizerSF
            Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(fr_modelPath, "");
            //! [initialize_FaceRecognizerSF]


            //! [facerecognizer]
            // Aligning and cropping facial image through the first face of faces detected.
            Mat aligned_face1, aligned_face2;
            faceRecognizer->alignCrop(image1, faces1.row(0), aligned_face1);
            faceRecognizer->alignCrop(image2, faces2.row(0), aligned_face2);

            // Run feature extraction with given aligned_face
            Mat feature1, feature2;
            faceRecognizer->feature(aligned_face1, feature1);
            feature1 = feature1.clone();
            faceRecognizer->feature(aligned_face2, feature2);
            feature2 = feature2.clone();
            //! [facerecognizer]

            //! [match]
            double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE);
            double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2);
            //! [match]

            if (cos_score >= cosine_similar_thresh)
            {
                std::cout << "They have the same identity;";
            }
            else
            {
                std::cout << "They have different identities;";
            }
            std::cout << " Cosine Similarity: " << cos_score << ", threshold: " << cosine_similar_thresh << ". (higher value means higher similarity, max 1.0)\n";

            if (L2_score <= l2norm_similar_thresh)
            {
                std::cout << "They have the same identity;";
            }
            else
            {
                std::cout << "They have different identities.";
            }
            std::cout << " NormL2 Distance: " << L2_score << ", threshold: " << l2norm_similar_thresh << ". (lower value means higher similarity, min 0.0)\n";
        }
        cout << "Press any key to exit..." << endl;
        waitKey(0);
    }
    else
    {
        int frameWidth, frameHeight;
        VideoCapture capture;
        std::string video = parser.get<string>("video");
        if (video.size() == 1 && isdigit(video[0]))
            capture.open(parser.get<int>("video"));
        else
            capture.open(samples::findFileOrKeep(video));  // keep GStreamer pipelines
        if (capture.isOpened())
        {
            frameWidth = int(capture.get(CAP_PROP_FRAME_WIDTH) * scale);
            frameHeight = int(capture.get(CAP_PROP_FRAME_HEIGHT) * scale);
            cout << "Video " << video
                << ": width=" << frameWidth
                << ", height=" << frameHeight
                << endl;
        }
        else
        {
            cout << "Could not initialize video capturing: " << video << "\n";
            return 1;
        }

        detector->setInputSize(Size(frameWidth, frameHeight));

        cout << "Press 'SPACE' to save frame, any other key to exit..." << endl;
        int nFrame = 0;
        for (;;)
        {
            // Get frame
            Mat frame;
            if (!capture.read(frame))
            {
                cerr << "Can't grab frame! Stop\n";
                break;
            }

            resize(frame, frame, Size(frameWidth, frameHeight));

            // Inference
            Mat faces;
            tm.start();
            detector->detect(frame, faces);
            tm.stop();

            Mat result = frame.clone();
            // Draw results on the input image
            visualize(result, nFrame, faces, tm.getFPS());

            // Visualize results
            imshow("Live", result);

            int key = waitKey(1);
            bool saveFrame = save;
            if (key == ' ')
            {
                saveFrame = true;
                key = 0;  // handled
            }

            if (saveFrame)
            {
                std::string frame_name = cv::format("frame_%05d.png", nFrame);
                std::string result_name = cv::format("result_%05d.jpg", nFrame);
                cout << "Saving '" << frame_name << "' and '" << result_name << "' ...\n";
                imwrite(frame_name, frame);
                imwrite(result_name, result);
            }

            ++nFrame;

            if (key > 0)
                break;
        }
        cout << "Processed " << nFrame << " frames" << endl;
    }
    cout << "Done." << endl;
    return 0;
}