File: models.yml

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (282 lines) | stat: -rw-r--r-- 8,905 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
%YAML 1.0
---
################################################################################
# Object detection models.
################################################################################

# OpenCV's face detection network
opencv_fd:
  load_info:
    url: "https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel"
    sha1: "15aa726b4d46d9f023526d85537db81cbc8dd566"
  model: "opencv_face_detector.caffemodel"
  config: "opencv_face_detector.prototxt"
  mean: [104, 177, 123]
  scale: 1.0
  width: 300
  height: 300
  rgb: false
  sample: "object_detection"

# YOLOv8 object detection family from ultralytics (https://github.com/ultralytics/ultralytics)
# Might be used for all YOLOv8n YOLOv8s YOLOv8m YOLOv8l and YOLOv8x
yolov8x:
  load_info:
    url: "https://huggingface.co/cabelo/yolov8/resolve/main/yolov8x.onnx?download=true"
    sha1: "462f15d668c046d38e27d3df01fe8142dd004cb4"
  model: "yolov8x.onnx"
  mean: 0.0
  scale: 0.00392
  width: 640
  height: 640
  rgb: true
  classes: "object_detection_classes_yolo.txt"
  background_label_id: 0
  sample: "yolo_detector"

yolov8s:
  load_info:
    url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8s.onnx"
    sha1: "82cd83984396fe929909ecb58212b0e86d0904b1"
  model: "yolov8s.onnx"
  mean: 0.0
  scale: 0.00392
  width: 640
  height: 640
  rgb: true
  classes: "object_detection_classes_yolo.txt"
  background_label_id: 0
  sample: "yolo_detector"

yolov8n:
  load_info:
    url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8n.onnx"
    sha1: "68f864475d06e2ec4037181052739f268eeac38d"
  model: "yolov8n.onnx"
  mean: 0.0
  scale: 0.00392
  width: 640
  height: 640
  rgb: true
  classes: "object_detection_classes_yolo.txt"
  background_label_id: 0
  sample: "yolo_detector"

yolov8m:
  load_info:
    url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8m.onnx"
    sha1: "656ffeb4f3b067bc30df956728b5f9c61a4cb090"
  model: "yolov8m.onnx"
  mean: 0.0
  scale: 0.00392
  width: 640
  height: 640
  rgb: true
  classes: "object_detection_classes_yolo.txt"
  background_label_id: 0
  sample: "yolo_detector"

# YOLO4 object detection family from Darknet (https://github.com/AlexeyAB/darknet)
# YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/)
# Might be used for all YOLOv2, TinyYolov2, YOLOv3, YOLOv4 and TinyYolov4
yolov4:
  load_info:
    url: "https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights"
    sha1: "0143deb6c46fcc7f74dd35bf3c14edc3784e99ee"
  model: "yolov4.weights"
  config: "yolov4.cfg"
  mean: [0, 0, 0]
  scale: 0.00392
  width: 416
  height: 416
  rgb: true
  classes: "object_detection_classes_yolo.txt"
  background_label_id: 0
  sample: "object_detection"

yolov4-tiny:
  load_info:
    url: "https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights"
    sha1: "451caaab22fb9831aa1a5ee9b5ba74a35ffa5dcb"
  model: "yolov4-tiny.weights"
  config: "yolov4-tiny.cfg"
  mean: [0, 0, 0]
  scale: 0.00392
  width: 416
  height: 416
  rgb: true
  classes: "object_detection_classes_yolo.txt"
  background_label_id: 0
  sample: "object_detection"

yolov3:
  load_info:
    url: "https://pjreddie.com/media/files/yolov3.weights"
    sha1: "520878f12e97cf820529daea502acca380f1cb8e"
  model: "yolov3.weights"
  config: "yolov3.cfg"
  mean: [0, 0, 0]
  scale: 0.00392
  width: 416
  height: 416
  rgb: true
  classes: "object_detection_classes_yolo.txt"
  background_label_id: 0
  sample: "object_detection"

tiny-yolo-voc:
  load_info:
    url: "https://pjreddie.com/media/files/yolov2-tiny-voc.weights"
    sha1: "24b4bd049fc4fa5f5e95f684a8967e65c625dff9"
  model: "tiny-yolo-voc.weights"
  config: "tiny-yolo-voc.cfg"
  mean: [0, 0, 0]
  scale: 0.00392
  width: 416
  height: 416
  rgb: true
  classes: "object_detection_classes_pascal_voc.txt"
  background_label_id: 0
  sample: "object_detection"

yolov8:
  load_info:
    url: "https://github.com/CVHub520/X-AnyLabeling/releases/download/v0.1.0/yolov8n.onnx"
    sha1: "68f864475d06e2ec4037181052739f268eeac38d"
  model: "yolov8n.onnx"
  mean: [0, 0, 0]
  scale: 0.00392
  width: 640
  height: 640
  rgb: true
  postprocessing: "yolov8"
  classes: "object_detection_classes_yolo.txt"
  sample: "object_detection"

# Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD
ssd_caffe:
  load_info:
    url: "https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc"
    sha1: "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a"
  model: "MobileNetSSD_deploy.caffemodel"
  config: "MobileNetSSD_deploy.prototxt"
  mean: [127.5, 127.5, 127.5]
  scale: 0.007843
  width: 300
  height: 300
  rgb: false
  classes: "object_detection_classes_pascal_voc.txt"
  sample: "object_detection"

# TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection
ssd_tf:
  load_info:
    url: "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
    sha1: "9e4bcdd98f4c6572747679e4ce570de4f03a70e2"
    download_sha: "6157ddb6da55db2da89dd561eceb7f944928e317"
    download_name: "ssd_mobilenet_v1_coco_2017_11_17.tar.gz"
    member: "ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb"
  model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
  config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
  mean: [0, 0, 0]
  scale: 1.0
  width: 300
  height: 300
  rgb: true
  classes: "object_detection_classes_coco.txt"
  sample: "object_detection"

# TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection
faster_rcnn_tf:
  load_info:
    url: "http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
    sha1: "f2e4bf386b9bb3e25ddfcbbd382c20f417e444f3"
    download_sha: "c710f25e5c6a3ce85fe793d5bf266d581ab1c230"
    download_name: "faster_rcnn_inception_v2_coco_2018_01_28.tar.gz"
    member: "faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb"
  model: "faster_rcnn_inception_v2_coco_2018_01_28.pb"
  config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
  mean: [0, 0, 0]
  scale: 1.0
  width: 800
  height: 600
  rgb: true
  sample: "object_detection"

################################################################################
# Image classification models.
################################################################################

# SqueezeNet v1.1 from https://github.com/DeepScale/SqueezeNet
squeezenet:
  load_info:
    url: "https://raw.githubusercontent.com/DeepScale/SqueezeNet/b5c3f1a23713c8b3fd7b801d229f6b04c64374a5/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel"
    sha1: "3397f026368a45ae236403ccc81cfcbe8ebe1bd0"
  model: "squeezenet_v1.1.caffemodel"
  config: "squeezenet_v1.1.prototxt"
  mean: [0, 0, 0]
  scale: 1.0
  width: 227
  height: 227
  rgb: false
  classes: "classification_classes_ILSVRC2012.txt"
  sample: "classification"

# Googlenet from https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
googlenet:
  load_info:
    url: "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel"
    sha1: "405fc5acd08a3bb12de8ee5e23a96bec22f08204"
  model: "bvlc_googlenet.caffemodel"
  config: "bvlc_googlenet.prototxt"
  mean: [104, 117, 123]
  scale: 1.0
  width: 224
  height: 224
  rgb: false
  classes: "classification_classes_ILSVRC2012.txt"
  sample: "classification"

################################################################################
# Semantic segmentation models.
################################################################################

# ENet road scene segmentation network from https://github.com/e-lab/ENet-training
# Works fine for different input sizes.
enet:
  load_info:
    url: "https://www.dropbox.com/s/tdde0mawbi5dugq/Enet-model-best.net?dl=1"
    sha1: "b4123a73bf464b9ebe9cfc4ab9c2d5c72b161315"
  model: "Enet-model-best.net"
  mean: [0, 0, 0]
  scale: 0.00392
  width: 512
  height: 256
  rgb: true
  classes: "enet-classes.txt"
  sample: "segmentation"

fcn8s:
  load_info:
    url: "http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel"
    sha1: "c449ea74dd7d83751d1357d6a8c323fcf4038962"
  model: "fcn8s-heavy-pascal.caffemodel"
  config: "fcn8s-heavy-pascal.prototxt"
  mean: [0, 0, 0]
  scale: 1.0
  width: 500
  height: 500
  rgb: false
  sample: "segmentation"

fcnresnet101:
  load_info:
    url: "https://github.com/onnx/models/raw/fb8271d5d5d9b90dbb1eb5e8e40f8f580fb248b3/vision/object_detection_segmentation/fcn/model/fcn-resnet101-11.onnx"
    sha1: "e7e76474bf6b73334ab32c4be1374c9e605f5aed"
  model: "fcn-resnet101-11.onnx"
  mean: [103.5, 116.2, 123.6]
  scale: 0.019
  width: 500
  height: 500
  rgb: false
  sample: "segmentation"