1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
//
// You can download a baseline ReID model and sample input from:
// https://github.com/ReID-Team/ReID_extra_testdata
//
// Authors of samples and Youtu ReID baseline:
// Xing Sun <winfredsun@tencent.com>
// Feng Zheng <zhengf@sustech.edu.cn>
// Xinyang Jiang <sevjiang@tencent.com>
// Fufu Yu <fufuyu@tencent.com>
// Enwei Zhang <miyozhang@tencent.com>
//
// Copyright (C) 2020-2021, Tencent.
// Copyright (C) 2020-2021, SUSTech.
//
#include <iostream>
#include <fstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
using namespace cv;
using namespace cv::dnn;
const char* keys =
"{help h | | show help message}"
"{model m | | network model}"
"{query_list q | | list of query images}"
"{gallery_list g | | list of gallery images}"
"{batch_size | 32 | batch size of each inference}"
"{resize_h | 256 | resize input to specific height.}"
"{resize_w | 128 | resize input to specific width.}"
"{topk k | 5 | number of gallery images showed in visualization}"
"{output_dir | | path for visualization(it should be existed)}"
"{backend b | 0 | choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation, "
"4: VKCOM, "
"5: CUDA }"
"{target t | 0 | choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"4: Vulkan, "
"6: CUDA, "
"7: CUDA fp16 (half-float preprocess) }";
namespace cv{
namespace reid{
static Mat preprocess(const Mat& img)
{
const double mean[3] = {0.485, 0.456, 0.406};
const double std[3] = {0.229, 0.224, 0.225};
Mat ret = Mat(img.rows, img.cols, CV_32FC3);
for (int y = 0; y < ret.rows; y ++)
{
for (int x = 0; x < ret.cols; x++)
{
for (int c = 0; c < 3; c++)
{
ret.at<Vec3f>(y,x)[c] = (float)((img.at<Vec3b>(y,x)[c] / 255.0 - mean[2 - c]) / std[2 - c]);
}
}
}
return ret;
}
static std::vector<float> normalization(const std::vector<float>& feature)
{
std::vector<float> ret;
float sum = 0.0;
for(int i = 0; i < (int)feature.size(); i++)
{
sum += feature[i] * feature[i];
}
sum = sqrt(sum);
for(int i = 0; i < (int)feature.size(); i++)
{
ret.push_back(feature[i] / sum);
}
return ret;
}
static void extractFeatures(const std::vector<std::string>& imglist, Net* net, const int& batch_size, const int& resize_h, const int& resize_w, std::vector<std::vector<float>>& features)
{
for(int st = 0; st < (int)imglist.size(); st += batch_size)
{
std::vector<Mat> batch;
for(int delta = 0; delta < batch_size && st + delta < (int)imglist.size(); delta++)
{
Mat img = imread(imglist[st + delta]);
batch.push_back(preprocess(img));
}
Mat blob = dnn::blobFromImages(batch, 1.0, Size(resize_w, resize_h), Scalar(0.0,0.0,0.0), true, false, CV_32F);
net->setInput(blob);
Mat out = net->forward();
for(int i = 0; i < (int)out.size().height; i++)
{
std::vector<float> temp_feature;
for(int j = 0; j < (int)out.size().width; j++)
{
temp_feature.push_back(out.at<float>(i,j));
}
features.push_back(normalization(temp_feature));
}
}
return ;
}
static void getNames(const std::string& ImageList, std::vector<std::string>& result)
{
std::ifstream img_in(ImageList);
std::string img_name;
while(img_in >> img_name)
{
result.push_back(img_name);
}
return ;
}
static float similarity(const std::vector<float>& feature1, const std::vector<float>& feature2)
{
float result = 0.0;
for(int i = 0; i < (int)feature1.size(); i++)
{
result += feature1[i] * feature2[i];
}
return result;
}
static void getTopK(const std::vector<std::vector<float>>& queryFeatures, const std::vector<std::vector<float>>& galleryFeatures, const int& topk, std::vector<std::vector<int>>& result)
{
for(int i = 0; i < (int)queryFeatures.size(); i++)
{
std::vector<float> similarityList;
std::vector<int> index;
for(int j = 0; j < (int)galleryFeatures.size(); j++)
{
similarityList.push_back(similarity(queryFeatures[i], galleryFeatures[j]));
index.push_back(j);
}
sort(index.begin(), index.end(), [&](int x,int y){return similarityList[x] > similarityList[y];});
std::vector<int> topk_result;
for(int j = 0; j < min(topk, (int)index.size()); j++)
{
topk_result.push_back(index[j]);
}
result.push_back(topk_result);
}
return ;
}
static void addBorder(const Mat& img, const Scalar& color, Mat& result)
{
const int bordersize = 5;
copyMakeBorder(img, result, bordersize, bordersize, bordersize, bordersize, cv::BORDER_CONSTANT, color);
return ;
}
static void drawRankList(const std::string& queryName, const std::vector<std::string>& galleryImageNames, const std::vector<int>& topk_index, const int& resize_h, const int& resize_w, Mat& result)
{
const Size outputSize = Size(resize_w, resize_h);
Mat q_img = imread(queryName), temp_img;
resize(q_img, temp_img, outputSize);
addBorder(temp_img, Scalar(0,0,0), q_img);
putText(q_img, "Query", Point(10, 30), FONT_HERSHEY_COMPLEX, 1.0, Scalar(0,255,0), 2);
std::vector<Mat> Images;
Images.push_back(q_img);
for(int i = 0; i < (int)topk_index.size(); i++)
{
Mat g_img = imread(galleryImageNames[topk_index[i]]);
resize(g_img, temp_img, outputSize);
addBorder(temp_img, Scalar(255,255,255), g_img);
putText(g_img, "G" + std::to_string(i), Point(10, 30), FONT_HERSHEY_COMPLEX, 1.0, Scalar(0,255,0), 2);
Images.push_back(g_img);
}
hconcat(Images, result);
return ;
}
static void visualization(const std::vector<std::vector<int>>& topk, const std::vector<std::string>& queryImageNames, const std::vector<std::string>& galleryImageNames, const std::string& output_dir, const int& resize_h, const int& resize_w)
{
for(int i = 0; i < (int)queryImageNames.size(); i++)
{
Mat img;
drawRankList(queryImageNames[i], galleryImageNames, topk[i], resize_h, resize_w, img);
std::string output_path = output_dir + "/" + queryImageNames[i].substr(queryImageNames[i].rfind("/")+1);
imwrite(output_path, img);
}
return ;
}
};
};
int main(int argc, char** argv)
{
// Parse command line arguments.
CommandLineParser parser(argc, argv, keys);
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
parser = CommandLineParser(argc, argv, keys);
parser.about("Use this script to run ReID networks using OpenCV.");
const std::string modelPath = parser.get<String>("model");
const std::string queryImageList = parser.get<String>("query_list");
const std::string galleryImageList = parser.get<String>("gallery_list");
const int backend = parser.get<int>("backend");
const int target = parser.get<int>("target");
const int batch_size = parser.get<int>("batch_size");
const int resize_h = parser.get<int>("resize_h");
const int resize_w = parser.get<int>("resize_w");
const int topk = parser.get<int>("topk");
const std::string output_dir= parser.get<String>("output_dir");
std::vector<std::string> queryImageNames;
reid::getNames(queryImageList, queryImageNames);
std::vector<std::string> galleryImageNames;
reid::getNames(galleryImageList, galleryImageNames);
dnn::Net net = dnn::readNet(modelPath);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
std::vector<std::vector<float>> queryFeatures;
reid::extractFeatures(queryImageNames, &net, batch_size, resize_h, resize_w, queryFeatures);
std::vector<std::vector<float>> galleryFeatures;
reid::extractFeatures(galleryImageNames, &net, batch_size, resize_h, resize_w, galleryFeatures);
std::vector<std::vector<int>> topkResult;
reid::getTopK(queryFeatures, galleryFeatures, topk, topkResult);
reid::visualization(topkResult, queryImageNames, galleryImageNames, output_dir, resize_h, resize_w);
return 0;
}
|