1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
#include <opencv2/core.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <vector>
#include <string>
#include <unordered_map>
#include <cmath>
#include <random>
#include <numeric>
using namespace cv;
using namespace std;
class FilterbankFeatures {
// Initializes pre-processing class. Default values are the values used by the Jasper
// architecture for pre-processing. For more details, refer to the paper here:
// https://arxiv.org/abs/1904.03288
private:
int sample_rate = 16000;
double window_size = 0.02;
double window_stride = 0.01;
int win_length = static_cast<int>(sample_rate * window_size); // Number of samples in window
int hop_length = static_cast<int>(sample_rate * window_stride); // Number of steps to advance between frames
int n_fft = 512; // Size of window for STFT
// Parameters for filterbanks calculation
int n_filt = 64;
double lowfreq = 0.;
double highfreq = sample_rate / 2;
public:
// Mel filterbanks preparation
double hz_to_mel(double frequencies)
{
//Converts frequencies from hz to mel scale
// Fill in the linear scale
double f_min = 0.0;
double f_sp = 200.0 / 3;
double mels = (frequencies - f_min) / f_sp;
// Fill in the log-scale part
double min_log_hz = 1000.0; // beginning of log region (Hz)
double min_log_mel = (min_log_hz - f_min) / f_sp; // same (Mels)
double logstep = std::log(6.4) / 27.0; // step size for log region
if (frequencies >= min_log_hz)
{
mels = min_log_mel + std::log(frequencies / min_log_hz) / logstep;
}
return mels;
}
vector<double> mel_to_hz(vector<double>& mels)
{
// Converts frequencies from mel to hz scale
// Fill in the linear scale
double f_min = 0.0;
double f_sp = 200.0 / 3;
vector<double> freqs;
for (size_t i = 0; i < mels.size(); i++)
{
freqs.push_back(f_min + f_sp * mels[i]);
}
// And now the nonlinear scale
double min_log_hz = 1000.0; // beginning of log region (Hz)
double min_log_mel = (min_log_hz - f_min) / f_sp; // same (Mels)
double logstep = std::log(6.4) / 27.0; // step size for log region
for(size_t i = 0; i < mels.size(); i++)
{
if (mels[i] >= min_log_mel)
{
freqs[i] = min_log_hz * exp(logstep * (mels[i] - min_log_mel));
}
}
return freqs;
}
vector<double> mel_frequencies(int n_mels, double fmin, double fmax)
{
// Calculates n mel frequencies between 2 frequencies
double min_mel = hz_to_mel(fmin);
double max_mel = hz_to_mel(fmax);
vector<double> mels;
double step = (max_mel - min_mel) / (n_mels - 1);
for(double i = min_mel; i < max_mel; i += step)
{
mels.push_back(i);
}
mels.push_back(max_mel);
vector<double> res = mel_to_hz(mels);
return res;
}
vector<vector<double>> mel(int n_mels, double fmin, double fmax)
{
// Generates mel filterbank matrix
double num = 1 + n_fft / 2;
vector<vector<double>> weights(n_mels, vector<double>(static_cast<int>(num), 0.));
// Center freqs of each FFT bin
vector<double> fftfreqs;
double step = (sample_rate / 2) / (num - 1);
for(double i = 0; i <= sample_rate / 2; i += step)
{
fftfreqs.push_back(i);
}
// 'Center freqs' of mel bands - uniformly spaced between limits
vector<double> mel_f = mel_frequencies(n_mels + 2, fmin, fmax);
vector<double> fdiff;
for(size_t i = 1; i < mel_f.size(); ++i)
{
fdiff.push_back(mel_f[i]- mel_f[i - 1]);
}
vector<vector<double>> ramps(mel_f.size(), vector<double>(fftfreqs.size()));
for (size_t i = 0; i < mel_f.size(); ++i)
{
for (size_t j = 0; j < fftfreqs.size(); ++j)
{
ramps[i][j] = mel_f[i] - fftfreqs[j];
}
}
double lower, upper, enorm;
for (int i = 0; i < n_mels; ++i)
{
// using Slaney-style mel which is scaled to be approx constant energy per channel
enorm = 2./(mel_f[i + 2] - mel_f[i]);
for (int j = 0; j < static_cast<int>(num); ++j)
{
// lower and upper slopes for all bins
lower = (-1) * ramps[i][j] / fdiff[i];
upper = ramps[i + 2][j] / fdiff[i + 1];
weights[i][j] = max(0., min(lower, upper)) * enorm;
}
}
return weights;
}
// STFT preparation
vector<double> pad_window_center(vector<double>&data, int size)
{
// Pad the window out to n_fft size
int n = static_cast<int>(data.size());
int lpad = static_cast<int>((size - n) / 2);
vector<double> pad_array;
for(int i = 0; i < lpad; ++i)
{
pad_array.push_back(0.);
}
for(size_t i = 0; i < data.size(); ++i)
{
pad_array.push_back(data[i]);
}
for(int i = 0; i < lpad; ++i)
{
pad_array.push_back(0.);
}
return pad_array;
}
vector<vector<double>> frame(vector<double>& x)
{
// Slices a data array into overlapping frames.
int n_frames = static_cast<int>(1 + (x.size() - n_fft) / hop_length);
vector<vector<double>> new_x(n_fft, vector<double>(n_frames));
for (int i = 0; i < n_fft; ++i)
{
for (int j = 0; j < n_frames; ++j)
{
new_x[i][j] = x[i + j * hop_length];
}
}
return new_x;
}
vector<double> hanning()
{
// https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
vector<double> window_tensor;
for (int j = 1 - win_length; j < win_length; j+=2)
{
window_tensor.push_back(1 - (0.5 * (1 - cos(CV_PI * j / (win_length - 1)))));
}
return window_tensor;
}
vector<vector<double>> stft_power(vector<double>& y)
{
// Short Time Fourier Transform. The STFT represents a signal in the time-frequency
// domain by computing discrete Fourier transforms (DFT) over short overlapping windows.
// https://en.wikipedia.org/wiki/Short-time_Fourier_transform
// Pad the time series so that frames are centered
vector<double> new_y;
int num = int(n_fft / 2);
for (int i = 0; i < num; ++i)
{
new_y.push_back(y[num - i]);
}
for (size_t i = 0; i < y.size(); ++i)
{
new_y.push_back(y[i]);
}
for (size_t i = y.size() - 2; i >= y.size() - num - 1; --i)
{
new_y.push_back(y[i]);
}
// Compute a window function
vector<double> window_tensor = hanning();
// Pad the window out to n_fft size
vector<double> fft_window = pad_window_center(window_tensor, n_fft);
// Window the time series
vector<vector<double>> y_frames = frame(new_y);
// Multiply on fft_window
for (size_t i = 0; i < y_frames.size(); ++i)
{
for (size_t j = 0; j < y_frames[0].size(); ++j)
{
y_frames[i][j] *= fft_window[i];
}
}
// Transpose frames for computing stft
vector<vector<double>> y_frames_transpose(y_frames[0].size(), vector<double>(y_frames.size()));
for (size_t i = 0; i < y_frames[0].size(); ++i)
{
for (size_t j = 0; j < y_frames.size(); ++j)
{
y_frames_transpose[i][j] = y_frames[j][i];
}
}
// Short Time Fourier Transform
// and get power of spectrum
vector<vector<double>> spectrum_power(y_frames_transpose[0].size() / 2 + 1 );
for (size_t i = 0; i < y_frames_transpose.size(); ++i)
{
Mat dstMat;
dft(y_frames_transpose[i], dstMat, DFT_COMPLEX_OUTPUT);
// we need only the first part of the spectrum, the second part is symmetrical
for (int j = 0; j < static_cast<int>(y_frames_transpose[0].size()) / 2 + 1; ++j)
{
double power_re = dstMat.at<double>(2 * j) * dstMat.at<double>(2 * j);
double power_im = dstMat.at<double>(2 * j + 1) * dstMat.at<double>(2 * j + 1);
spectrum_power[j].push_back(power_re + power_im);
}
}
return spectrum_power;
}
Mat calculate_features(vector<double>& x)
{
// Calculates filterbank features matrix.
// Do preemphasis
std::default_random_engine generator;
std::normal_distribution<double> normal_distr(0, 1);
double dither = 1e-5;
for(size_t i = 0; i < x.size(); ++i)
{
x[i] += dither * static_cast<double>(normal_distr(generator));
}
double preemph = 0.97;
for (size_t i = x.size() - 1; i > 0; --i)
{
x[i] -= preemph * x[i-1];
}
// Calculate Short Time Fourier Transform and get power of spectrum
auto spectrum_power = stft_power(x);
vector<vector<double>> filterbanks = mel(n_filt, lowfreq, highfreq);
// Calculate log of multiplication of filterbanks matrix on spectrum_power matrix
vector<vector<double>> x_stft(filterbanks.size(), vector<double>(spectrum_power[0].size(), 0));
for (size_t i = 0; i < filterbanks.size(); ++i)
{
for (size_t j = 0; j < filterbanks[0].size(); ++j)
{
for (size_t k = 0; k < spectrum_power[0].size(); ++k)
{
x_stft[i][k] += filterbanks[i][j] * spectrum_power[j][k];
}
}
for (size_t k = 0; k < spectrum_power[0].size(); ++k)
{
x_stft[i][k] = std::log(x_stft[i][k] + 1e-20);
}
}
// normalize data
auto elments_num = x_stft[0].size();
for(size_t i = 0; i < x_stft.size(); ++i)
{
double x_mean = std::accumulate(x_stft[i].begin(), x_stft[i].end(), 0.) / elments_num; // arithmetic mean
double x_std = 0; // standard deviation
for(size_t j = 0; j < elments_num; ++j)
{
double subtract = x_stft[i][j] - x_mean;
x_std += subtract * subtract;
}
x_std /= elments_num;
x_std = sqrt(x_std) + 1e-10; // make sure x_std is not zero
for(size_t j = 0; j < elments_num; ++j)
{
x_stft[i][j] = (x_stft[i][j] - x_mean) / x_std; // standard score
}
}
Mat calculate_features(static_cast<int>(x_stft.size()), static_cast<int>(x_stft[0].size()), CV_32F);
for(int i = 0; i < calculate_features.size[0]; ++i)
{
for(int j = 0; j < calculate_features.size[1]; ++j)
{
calculate_features.at<float>(i, j) = static_cast<float>(x_stft[i][j]);
}
}
return calculate_features;
}
};
class Decoder {
// Used for decoding the output of jasper model
private:
unordered_map<int, char> labels_map = fillMap();
int blank_id = 28;
public:
unordered_map<int, char> fillMap()
{
vector<char> labels={' ','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p'
,'q','r','s','t','u','v','w','x','y','z','\''};
unordered_map<int, char> map;
for(int i = 0; i < static_cast<int>(labels.size()); ++i)
{
map[i] = labels[i];
}
return map;
}
string decode(Mat& x)
{
// Takes output of Jasper model and performs ctc decoding algorithm to
// remove duplicates and special symbol. Returns prediction
vector<int> prediction;
for(int i = 0; i < x.size[1]; ++i)
{
double maxEl = -1e10;
int ind = 0;
for(int j = 0; j < x.size[2]; ++j)
{
if (maxEl <= x.at<float>(0, i, j))
{
maxEl = x.at<float>(0, i, j);
ind = j;
}
}
prediction.push_back(ind);
}
// CTC decoding procedure
vector<double> decoded_prediction = {};
int previous = blank_id;
for(int i = 0; i < static_cast<int>(prediction.size()); ++i)
{
if (( prediction[i] != previous || previous == blank_id) && prediction[i] != blank_id)
{
decoded_prediction.push_back(prediction[i]);
}
previous = prediction[i];
}
string hypotheses = {};
for(size_t i = 0; i < decoded_prediction.size(); ++i)
{
auto it = labels_map.find(static_cast<char>(decoded_prediction[i]));
if (it != labels_map.end())
hypotheses.push_back(it->second);
}
return hypotheses;
}
};
static string predict(Mat& features, dnn::Net net, Decoder decoder)
{
// Passes the features through the Jasper model and decodes the output to english transcripts.
// expand 2d features matrix to 3d
vector<int> sizes = {1, static_cast<int>(features.size[0]),
static_cast<int>(features.size[1])};
features = features.reshape(0, sizes);
// make prediction
net.setInput(features);
Mat output = net.forward();
// decode output to transcript
auto prediction = decoder.decode(output);
return prediction;
}
static int readAudioFile(vector<double>& inputAudio, string file, int audioStream)
{
VideoCapture cap;
int samplingRate = 16000;
vector<int> params { CAP_PROP_AUDIO_STREAM, audioStream,
CAP_PROP_VIDEO_STREAM, -1,
CAP_PROP_AUDIO_DATA_DEPTH, CV_32F,
CAP_PROP_AUDIO_SAMPLES_PER_SECOND, samplingRate
};
cap.open(file, CAP_ANY, params);
if (!cap.isOpened())
{
cerr << "Error : Can't read audio file: '" << file << "' with audioStream = " << audioStream << endl;
return -1;
}
const int audioBaseIndex = (int)cap.get(CAP_PROP_AUDIO_BASE_INDEX);
vector<double> frameVec;
Mat frame;
for (;;)
{
if (cap.grab())
{
cap.retrieve(frame, audioBaseIndex);
frameVec = frame;
inputAudio.insert(inputAudio.end(), frameVec.begin(), frameVec.end());
}
else
{
break;
}
}
return samplingRate;
}
static int readAudioMicrophone(vector<double>& inputAudio, int microTime)
{
VideoCapture cap;
int samplingRate = 16000;
vector<int> params { CAP_PROP_AUDIO_STREAM, 0,
CAP_PROP_VIDEO_STREAM, -1,
CAP_PROP_AUDIO_DATA_DEPTH, CV_32F,
CAP_PROP_AUDIO_SAMPLES_PER_SECOND, samplingRate
};
cap.open(0, CAP_ANY, params);
if (!cap.isOpened())
{
cerr << "Error: Can't open microphone" << endl;
return -1;
}
const int audioBaseIndex = (int)cap.get(CAP_PROP_AUDIO_BASE_INDEX);
vector<double> frameVec;
Mat frame;
if (microTime <= 0)
{
cerr << "Error: Duration of audio chunk must be > 0" << endl;
return -1;
}
size_t sizeOfData = static_cast<size_t>(microTime * samplingRate);
while (inputAudio.size() < sizeOfData)
{
if (cap.grab())
{
cap.retrieve(frame, audioBaseIndex);
frameVec = frame;
inputAudio.insert(inputAudio.end(), frameVec.begin(), frameVec.end());
}
else
{
cerr << "Error: Grab error" << endl;
break;
}
}
return samplingRate;
}
int main(int argc, char** argv)
{
const String keys =
"{help h usage ? | | This script runs Jasper Speech recognition model }"
"{input_file i | | Path to input audio file. If not specified, microphone input will be used }"
"{audio_duration t | 15 | Duration of audio chunk to be captured from microphone }"
"{audio_stream a | 0 | CAP_PROP_AUDIO_STREAM value }"
"{show_spectrogram s | false | Show a spectrogram of the input audio: true / false / 1 / 0 }"
"{model m | jasper.onnx | Path to the onnx file of Jasper. You can download the converted onnx model "
"from https://drive.google.com/drive/folders/1wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6?usp=sharing}"
"{backend b | dnn::DNN_BACKEND_DEFAULT | Select a computation backend: "
"dnn::DNN_BACKEND_DEFAULT, "
"dnn::DNN_BACKEND_INFERENCE_ENGINE, "
"dnn::DNN_BACKEND_OPENCV }"
"{target t | dnn::DNN_TARGET_CPU | Select a target device: "
"dnn::DNN_TARGET_CPU, "
"dnn::DNN_TARGET_OPENCL, "
"dnn::DNN_TARGET_OPENCL_FP16 }"
;
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
// Load Network
dnn::Net net = dnn::readNetFromONNX(parser.get<std::string>("model"));
net.setPreferableBackend(parser.get<int>("backend"));
net.setPreferableTarget(parser.get<int>("target"));
// Get audio
vector<double>inputAudio = {};
int samplingRate = 0;
if (parser.has("input_file"))
{
string audio = samples::findFile(parser.get<std::string>("input_file"));
samplingRate = readAudioFile(inputAudio, audio, parser.get<int>("audio_stream"));
}
else
{
samplingRate = readAudioMicrophone(inputAudio, parser.get<int>("audio_duration"));
}
if ((inputAudio.size() == 0) || samplingRate <= 0)
{
cerr << "Error: problems with audio reading, check input arguments" << endl;
return -1;
}
if (inputAudio.size() / samplingRate < 6)
{
cout << "Warning: For predictable network performance duration of audio must exceed 6 sec."
" Audio will be extended with zero samples" << endl;
for(int i = static_cast<int>(inputAudio.size()) - 1; i < samplingRate * 6; ++i)
{
inputAudio.push_back(0);
}
}
// Calculate features
FilterbankFeatures filter;
auto calculated_features = filter.calculate_features(inputAudio);
// Show spectogram if required
if (parser.get<bool>("show_spectrogram") == true)
{
Mat spectogram;
normalize(calculated_features, spectogram, 0, 255, NORM_MINMAX, CV_8U);
applyColorMap(spectogram, spectogram, COLORMAP_INFERNO);
imshow("spectogram", spectogram);
waitKey(0);
}
Decoder decoder;
string prediction = predict(calculated_features, net, decoder);
for( auto &transcript: prediction)
{
cout << transcript;
}
return 0;
}
|