File: speech_recognition.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (567 lines) | stat: -rw-r--r-- 23,208 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import numpy as np
import cv2 as cv
import argparse
import os

'''
 You can download the converted onnx model from https://drive.google.com/drive/folders/1wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6?usp=sharing
 or convert the model yourself.

 You can get the original pre-trained Jasper model from NVIDIA : https://ngc.nvidia.com/catalog/models/nvidia:jasper_pyt_onnx_fp16_amp/files
    Download and unzip : `$ wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/jasper_pyt_onnx_fp16_amp/versions/20.10.0/zip -O jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp.zip`

 you can get the script to convert the model here : https://gist.github.com/spazewalker/507f1529e19aea7e8417f6e935851a01

 You can convert the model using the following steps:
     1. Import onnx and load the original model
        ```
        import onnx
        model = onnx.load("./jasper-onnx/1/model.onnx")
        ```

     3. Change data type of input layer
        ```
        inp = model.graph.input[0]
        model.graph.input.remove(inp)
        inp.type.tensor_type.elem_type = 1
        model.graph.input.insert(0,inp)
        ```

     4. Change the data type of output layer
        ```
        out = model.graph.output[0]
        model.graph.output.remove(out)
        out.type.tensor_type.elem_type = 1
        model.graph.output.insert(0,out)
        ```

     5. Change the data type of every initializer and cast it's values from FP16 to FP32
        ```
        for i,init in enumerate(model.graph.initializer):
            model.graph.initializer.remove(init)
            init.data_type = 1
            init.raw_data = np.frombuffer(init.raw_data, count=np.product(init.dims), dtype=np.float16).astype(np.float32).tobytes()
            model.graph.initializer.insert(i,init)
        ```

     6. Add an additional reshape node to handle the inconsistent input from python and c++ of openCV.
        see https://github.com/opencv/opencv/issues/19091
        Make & insert a new node with 'Reshape' operation & required initializer
        ```
            tensor = numpy_helper.from_array(np.array([0,64,-1]),name='shape_reshape')
            model.graph.initializer.insert(0,tensor)
            node = onnx.helper.make_node(op_type='Reshape',inputs=['input__0','shape_reshape'], outputs=['input_reshaped'], name='reshape__0')
            model.graph.node.insert(0,node)
            model.graph.node[1].input[0] = 'input_reshaped'
        ```

     7. Finally save the model
        ```
        with open('jasper_dynamic_input_float.onnx','wb') as f:
            onnx.save_model(model,f)
        ```

    Original Repo : https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper
 '''

class FilterbankFeatures:
    def __init__(self,
                 sample_rate=16000, window_size=0.02, window_stride=0.01,
                 n_fft=512, preemph=0.97, n_filt=64, lowfreq=0,
                 highfreq=None, log=True, dither=1e-5):
        '''
            Initializes pre-processing class. Default values are the values used by the Jasper
            architecture for pre-processing. For more details, refer to the paper here:
            https://arxiv.org/abs/1904.03288
        '''
        self.win_length = int(sample_rate * window_size) # frame size
        self.hop_length = int(sample_rate * window_stride) # stride
        self.n_fft = n_fft or 2 ** np.ceil(np.log2(self.win_length))
        self.log = log
        self.dither = dither
        self.n_filt = n_filt
        self.preemph = preemph
        highfreq = highfreq or sample_rate / 2
        self.window_tensor = np.hanning(self.win_length)

        self.filterbanks = self.mel(sample_rate, self.n_fft, n_mels=n_filt, fmin=lowfreq, fmax=highfreq)
        self.filterbanks.dtype=np.float32
        self.filterbanks = np.expand_dims(self.filterbanks,0)

    def normalize_batch(self, x, seq_len):
        '''
            Normalizes the features.
        '''
        x_mean = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
        x_std = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
        for i in range(x.shape[0]):
            x_mean[i, :] = np.mean(x[i, :, :seq_len[i]],axis=1)
            x_std[i, :] = np.std(x[i, :, :seq_len[i]],axis=1)
        # make sure x_std is not zero
        x_std += 1e-10
        return (x - np.expand_dims(x_mean,2)) / np.expand_dims(x_std,2)

    def calculate_features(self, x, seq_len):
        '''
            Calculates filterbank features.
            args:
                x : mono channel audio
                seq_len : length of the audio sample
            returns:
                x : filterbank features
        '''
        dtype = x.dtype

        seq_len = np.ceil(seq_len / self.hop_length)
        seq_len = np.array(seq_len,dtype=np.int32)

        # dither
        if self.dither > 0:
            x += self.dither * np.random.randn(*x.shape)

        # do preemphasis
        if self.preemph is not None:
            x = np.concatenate(
                (np.expand_dims(x[0],-1), x[1:] - self.preemph * x[:-1]), axis=0)

        # Short Time Fourier Transform
        x  = self.stft(x, n_fft=self.n_fft, hop_length=self.hop_length,
                  win_length=self.win_length,
                  fft_window=self.window_tensor)

        # get power spectrum
        x = (x**2).sum(-1)

        # dot with filterbank energies
        x = np.matmul(np.array(self.filterbanks,dtype=x.dtype), x)

        # log features if required
        if self.log:
            x = np.log(x + 1e-20)

        # normalize if required
        x = self.normalize_batch(x, seq_len).astype(dtype)
        return x

    # Mel Frequency calculation
    def hz_to_mel(self, frequencies):
        '''
            Converts frequencies from hz to mel scale. Input can be a number or a vector.
        '''
        frequencies = np.asanyarray(frequencies)

        f_min = 0.0
        f_sp = 200.0 / 3

        mels = (frequencies - f_min) / f_sp

        # Fill in the log-scale part
        min_log_hz = 1000.0  # beginning of log region (Hz)
        min_log_mel = (min_log_hz - f_min) / f_sp  # same (Mels)
        logstep = np.log(6.4) / 27.0  # step size for log region

        if frequencies.ndim:
            # If we have array data, vectorize
            log_t = frequencies >= min_log_hz
            mels[log_t] = min_log_mel + np.log(frequencies[log_t] / min_log_hz) / logstep
        elif frequencies >= min_log_hz:
            # If we have scalar data, directly
            mels = min_log_mel + np.log(frequencies / min_log_hz) / logstep
        return mels

    def mel_to_hz(self, mels):
        '''
            Converts frequencies from mel to hz scale. Input can be a number or a vector.
        '''
        mels = np.asanyarray(mels)

        # Fill in the linear scale
        f_min = 0.0
        f_sp = 200.0 / 3
        freqs = f_min + f_sp * mels

        # And now the nonlinear scale
        min_log_hz = 1000.0  # beginning of log region (Hz)
        min_log_mel = (min_log_hz - f_min) / f_sp  # same (Mels)
        logstep = np.log(6.4) / 27.0  # step size for log region

        if mels.ndim:
            # If we have vector data, vectorize
            log_t = mels >= min_log_mel
            freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
        elif mels >= min_log_mel:
            # If we have scalar data, check directly
            freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel))

        return freqs

    def mel_frequencies(self, n_mels=128, fmin=0.0, fmax=11025.0):
        '''
            Calculates n mel frequencies between 2 frequencies
            args:
                n_mels : number of bands
                fmin : min frequency
                fmax : max frequency
            returns:
                mels : vector of mel frequencies
        '''
        # 'Center freqs' of mel bands - uniformly spaced between limits
        min_mel = self.hz_to_mel(fmin)
        max_mel = self.hz_to_mel(fmax)

        mels = np.linspace(min_mel, max_mel, n_mels)

        return self.mel_to_hz(mels)

    def mel(self, sr, n_fft, n_mels=128, fmin=0.0, fmax=None, dtype=np.float32):
        '''
            Generates mel filterbank
            args:
                sr : Sampling rate
                n_fft : number of FFT components
                n_mels : number of Mel bands to generate
                fmin : lowest frequency (in Hz)
                fmax : highest frequency (in Hz). sr/2.0 if None
                dtype : the data type of the output basis.
            returns:
                mels : Mel transform matrix
        '''
        # default Max freq = half of sampling rate
        if fmax is None:
            fmax = float(sr) / 2

        # Initialize the weights
        n_mels = int(n_mels)
        weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)

        # Center freqs of each FFT bin
        fftfreqs = np.linspace(0, float(sr) / 2, int(1 + n_fft // 2), endpoint=True)

        # 'Center freqs' of mel bands - uniformly spaced between limits
        mel_f = self.mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax)

        fdiff = np.diff(mel_f)
        ramps = np.subtract.outer(mel_f, fftfreqs)

        for i in range(n_mels):
            # lower and upper slopes for all bins
            lower = -ramps[i] / fdiff[i]
            upper = ramps[i + 2] / fdiff[i + 1]

            # .. then intersect them with each other and zero
            weights[i] = np.maximum(0, np.minimum(lower, upper))

        # Using Slaney-style mel which is scaled to be approx constant energy per channel
        enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
        weights *= enorm[:, np.newaxis]
        return weights

    # STFT preparation
    def pad_window_center(self, data, size, axis=-1, **kwargs):
        '''
            Centers the data and pads.
            args:
                data : Vector to be padded and centered
                size : Length to pad data
                axis : Axis along which to pad and center the data
                kwargs : arguments passed to np.pad
            return : centered and padded data
        '''
        kwargs.setdefault("mode", "constant")
        n = data.shape[axis]
        lpad = int((size - n) // 2)
        lengths = [(0, 0)] * data.ndim
        lengths[axis] = (lpad, int(size - n - lpad))
        if lpad < 0:
            raise Exception(
                ("Target size ({:d}) must be at least input size ({:d})").format(size, n)
            )
        return np.pad(data, lengths, **kwargs)

    def frame(self, x, frame_length, hop_length):
        '''
            Slices a data array into (overlapping) frames.
            args:
                x : array to frame
                frame_length : length of frame
                hop_length : Number of steps to advance between frames
            return : A framed view of `x`
        '''
        if x.shape[-1] < frame_length:
            raise Exception(
                "Input is too short (n={:d})"
                " for frame_length={:d}".format(x.shape[-1], frame_length)
            )
        x = np.asfortranarray(x)
        n_frames = 1 + (x.shape[-1] - frame_length) // hop_length
        strides = np.asarray(x.strides)
        new_stride = np.prod(strides[strides > 0] // x.itemsize) * x.itemsize
        shape = list(x.shape)[:-1] + [frame_length, n_frames]
        strides = list(strides) + [hop_length * new_stride]
        return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)

    def dtype_r2c(self, d, default=np.complex64):
        '''
            Find the complex numpy dtype corresponding to a real dtype.
            args:
                d : The real-valued dtype to convert to complex.
                default : The default complex target type, if `d` does not match a known dtype
            return : The complex dtype
        '''
        mapping = {
            np.dtype(np.float32): np.complex64,
            np.dtype(np.float64): np.complex128,
        }
        dt = np.dtype(d)
        if dt.kind == "c":
            return dt
        return np.dtype(mapping.get(dt, default))

    def stft(self, y, n_fft, hop_length=None, win_length=None, fft_window=None, pad_mode='reflect', return_complex=False):
        '''
            Short Time Fourier Transform. The STFT represents a signal in the time-frequency
            domain by computing discrete Fourier transforms (DFT) over short overlapping windows.
            args:
                y : input signal
                n_fft : length of the windowed signal after padding with zeros.
                hop_length : number of audio samples between adjacent STFT columns.
                win_length : Each frame of audio is windowed by window of length win_length and
                    then padded with zeros to match n_fft
                fft_window : a vector or array of length `n_fft` having values computed by a
                    window function
                pad_mode : mode while padding the signal
                return_complex : returns array with complex data type if `True`
            return : Matrix of short-term Fourier transform coefficients.
        '''
        if win_length is None:
            win_length = n_fft
        if hop_length is None:
            hop_length = int(win_length // 4)
        if y.ndim!=1:
            raise Exception(f'Invalid input shape. Only Mono Channeled audio supported. Input must have shape (Audio,). Got {y.shape}')

        # Pad the window out to n_fft size
        fft_window = self.pad_window_center(fft_window, n_fft)

        # Reshape so that the window can be broadcast
        fft_window = fft_window.reshape((-1, 1))

        # Pad the time series so that frames are centered
        y = np.pad(y, int(n_fft // 2), mode=pad_mode)

        # Window the time series.
        y_frames = self.frame(y, frame_length=n_fft, hop_length=hop_length)

        # Convert data type to complex
        dtype = self.dtype_r2c(y.dtype)

        # Pre-allocate the STFT matrix
        stft_matrix = np.empty( (int(1 + n_fft // 2), y_frames.shape[-1]), dtype=dtype, order="F")

        stft_matrix = np.fft.rfft( fft_window * y_frames, axis=0)
        return stft_matrix if return_complex==True else np.stack((stft_matrix.real,stft_matrix.imag),axis=-1)

class Decoder:
    '''
        Used for decoding the output of jasper model.
    '''
    def __init__(self):
        labels=[' ','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z',"'"]
        self.labels_map = {i: label for i,label in enumerate(labels)}
        self.blank_id = 28

    def decode(self,x):
        """
            Takes output of Jasper model and performs ctc decoding algorithm to
            remove duplicates and special symbol. Returns prediction
        """
        x = np.argmax(x,axis=-1)
        hypotheses = []
        prediction = x.tolist()
        # CTC decoding procedure
        decoded_prediction = []
        previous = self.blank_id
        for p in prediction:
            if (p != previous or previous == self.blank_id) and p != self.blank_id:
                decoded_prediction.append(p)
            previous = p
        hypothesis = ''.join([self.labels_map[c] for c in decoded_prediction])
        hypotheses.append(hypothesis)
        return hypotheses

def predict(features, net, decoder):
    '''
        Passes the features through the Jasper model and decodes the output to english transcripts.
        args:
            features : input features, calculated using FilterbankFeatures class
            net : Jasper model dnn.net object
            decoder : Decoder object
        return : Predicted text
    '''
    # make prediction
    net.setInput(features)
    output = net.forward()

    # decode output to transcript
    prediction = decoder.decode(output.squeeze(0))
    return prediction[0]

def readAudioFile(file, audioStream):
    cap = cv.VideoCapture(file)
    samplingRate = 16000
    params = np.asarray([cv.CAP_PROP_AUDIO_STREAM, audioStream,
              cv.CAP_PROP_VIDEO_STREAM, -1,
              cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_32F,
              cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND, samplingRate
              ])
    cap.open(file, cv.CAP_ANY, params)
    if cap.isOpened() is False:
        print("Error : Can't read audio file:", file, "with audioStream = ", audioStream)
        return
    audioBaseIndex = int (cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
    inputAudio = []
    while(1):
        if (cap.grab()):
            frame = np.asarray([])
            frame = cap.retrieve(frame, audioBaseIndex)
            for i in range(len(frame[1][0])):
                inputAudio.append(frame[1][0][i])
        else:
            break
    inputAudio = np.asarray(inputAudio, dtype=np.float64)
    return inputAudio, samplingRate

def readAudioMicrophone(microTime):
    cap = cv.VideoCapture()
    samplingRate = 16000
    params = np.asarray([cv.CAP_PROP_AUDIO_STREAM, 0,
              cv.CAP_PROP_VIDEO_STREAM, -1,
              cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_32F,
              cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND, samplingRate
              ])
    cap.open(0, cv.CAP_ANY, params)
    if cap.isOpened() is False:
        print("Error: Can't open microphone")
        print("Error: problems with audio reading, check input arguments")
        return
    audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
    cvTickFreq = cv.getTickFrequency()
    sysTimeCurr = cv.getTickCount()
    sysTimePrev = sysTimeCurr
    inputAudio = []
    while ((sysTimeCurr - sysTimePrev) / cvTickFreq < microTime):
        if (cap.grab()):
            frame = np.asarray([])
            frame = cap.retrieve(frame, audioBaseIndex)
            for i in range(len(frame[1][0])):
                inputAudio.append(frame[1][0][i])
            sysTimeCurr = cv.getTickCount()
        else:
            print("Error: Grab error")
            break
    inputAudio = np.asarray(inputAudio, dtype=np.float64)
    print("Number of samples: ", len(inputAudio))
    return inputAudio, samplingRate

if __name__ == '__main__':

    # Computation backends supported by layers
    backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
    # Target Devices for computation
    targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16)

    parser = argparse.ArgumentParser(description='This script runs Jasper Speech recognition model',
                                     formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--input_type', type=str, required=True, help='file or microphone')
    parser.add_argument('--micro_time', type=int, default=15, help='Duration of microphone work in seconds. Must be more than 6 sec')
    parser.add_argument('--input_audio', type=str, help='Path to input audio file. OR Path to a txt file with relative path to multiple audio files in different lines')
    parser.add_argument('--audio_stream', type=int, default=0, help='CAP_PROP_AUDIO_STREAM value')
    parser.add_argument('--show_spectrogram', action='store_true', help='Whether to show a spectrogram of the input audio.')
    parser.add_argument('--model', type=str, default='jasper.onnx', help='Path to the onnx file of Jasper. default="jasper.onnx"')
    parser.add_argument('--output', type=str, help='Path to file where recognized audio transcript must be saved. Leave this to print on console.')
    parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
                        help='Select a computation backend: '
                        "%d: automatically (by default) "
                        "%d: OpenVINO Inference Engine "
                        "%d: OpenCV Implementation " % backends)
    parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
                        help='Select a target device: '
                        "%d: CPU target (by default) "
                        "%d: OpenCL "
                        "%d: OpenCL FP16 " % targets)

    args, _ = parser.parse_known_args()

    if args.input_audio and not os.path.isfile(args.input_audio):
        raise OSError("Input audio file does not exist")
    if not os.path.isfile(args.model):
        raise OSError("Jasper model file does not exist")

    features = []
    if args.input_type == "file":
        if args.input_audio.endswith('.txt'):
            with open(args.input_audio) as f:
                content = f.readlines()
                content = [x.strip() for x in content]
                audio_file_paths = content
            for audio_file_path in audio_file_paths:
                if not os.path.isfile(audio_file_path):
                    raise OSError("Audio file({audio_file_path}) does not exist")
        else:
            audio_file_paths = [args.input_audio]
        audio_file_paths = [os.path.abspath(x) for x in audio_file_paths]

        # Read audio Files
        for audio_file_path in audio_file_paths:
            audio = readAudioFile(audio_file_path, args.audio_stream)
            if audio is None:
                raise Exception(f"Can't read {args.input_audio}. Try a different format")
            features.append(audio[0])
    elif args.input_type == "microphone":
        # Read audio from microphone
        audio = readAudioMicrophone(args.micro_time)
        if audio is None:
            raise Exception(f"Can't open microphone. Try a different format")
        features.append(audio[0])
    else:
        raise Exception(f"input_type {args.input_type} doesn't exist. Please enter 'file' or 'microphone'")

    # Get Filterbank Features
    feature_extractor = FilterbankFeatures()
    for i in range(len(features)):
        X = features[i]
        seq_len = np.array([X.shape[0]], dtype=np.int32)
        features[i] = feature_extractor.calculate_features(x=X, seq_len=seq_len)

    # Load Network
    net = cv.dnn.readNetFromONNX(args.model)
    net.setPreferableBackend(args.backend)
    net.setPreferableTarget(args.target)

    # Show spectogram if required
    if args.show_spectrogram and not args.input_audio.endswith('.txt'):
        img = cv.normalize(src=features[0][0], dst=None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U)
        img = cv.applyColorMap(img, cv.COLORMAP_JET)
        cv.imshow('spectogram', img)
        cv.waitKey(0)

    # Initialize decoder
    decoder = Decoder()

    # Make prediction
    prediction = []
    print("Predicting...")
    for feature in features:
        print(f"\rAudio file {len(prediction)+1}/{len(features)}", end='')
        prediction.append(predict(feature, net, decoder))
    print("")

    # save transcript if required
    if args.output:
        with open(args.output,'w') as f:
            for pred in prediction:
                f.write(pred+'\n')
        print("Transcript was written to {}".format(args.output))
    else:
        print(prediction)
    cv.destroyAllWindows()