1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
def tokenize(s):
tokens = []
token = ""
isString = False
isComment = False
for symbol in s:
isComment = (isComment and symbol != '\n') or (not isString and symbol == '#')
if isComment:
continue
if symbol == ' ' or symbol == '\t' or symbol == '\r' or symbol == '\'' or \
symbol == '\n' or symbol == ':' or symbol == '\"' or symbol == ';' or \
symbol == ',':
if (symbol == '\"' or symbol == '\'') and isString:
tokens.append(token)
token = ""
else:
if isString:
token += symbol
elif token:
tokens.append(token)
token = ""
isString = (symbol == '\"' or symbol == '\'') ^ isString
elif symbol == '{' or symbol == '}' or symbol == '[' or symbol == ']':
if token:
tokens.append(token)
token = ""
tokens.append(symbol)
else:
token += symbol
if token:
tokens.append(token)
return tokens
def parseMessage(tokens, idx):
msg = {}
assert(tokens[idx] == '{')
isArray = False
while True:
if not isArray:
idx += 1
if idx < len(tokens):
fieldName = tokens[idx]
else:
return None
if fieldName == '}':
break
idx += 1
fieldValue = tokens[idx]
if fieldValue == '{':
embeddedMsg, idx = parseMessage(tokens, idx)
if fieldName in msg:
msg[fieldName].append(embeddedMsg)
else:
msg[fieldName] = [embeddedMsg]
elif fieldValue == '[':
isArray = True
elif fieldValue == ']':
isArray = False
else:
if fieldName in msg:
msg[fieldName].append(fieldValue)
else:
msg[fieldName] = [fieldValue]
return msg, idx
def readTextMessage(filePath):
if not filePath:
return {}
with open(filePath, 'rt') as f:
content = f.read()
tokens = tokenize('{' + content + '}')
msg = parseMessage(tokens, 0)
return msg[0] if msg else {}
def listToTensor(values):
if all([isinstance(v, float) for v in values]):
dtype = 'DT_FLOAT'
field = 'float_val'
elif all([isinstance(v, int) for v in values]):
dtype = 'DT_INT32'
field = 'int_val'
else:
raise Exception('Wrong values types')
msg = {
'tensor': {
'dtype': dtype,
'tensor_shape': {
'dim': {
'size': len(values)
}
}
}
}
msg['tensor'][field] = values
return msg
def addConstNode(name, values, graph_def):
node = NodeDef()
node.name = name
node.op = 'Const'
node.addAttr('value', values)
graph_def.node.extend([node])
def addSlice(inp, out, begins, sizes, graph_def):
beginsNode = NodeDef()
beginsNode.name = out + '/begins'
beginsNode.op = 'Const'
beginsNode.addAttr('value', begins)
graph_def.node.extend([beginsNode])
sizesNode = NodeDef()
sizesNode.name = out + '/sizes'
sizesNode.op = 'Const'
sizesNode.addAttr('value', sizes)
graph_def.node.extend([sizesNode])
sliced = NodeDef()
sliced.name = out
sliced.op = 'Slice'
sliced.input.append(inp)
sliced.input.append(beginsNode.name)
sliced.input.append(sizesNode.name)
graph_def.node.extend([sliced])
def addReshape(inp, out, shape, graph_def):
shapeNode = NodeDef()
shapeNode.name = out + '/shape'
shapeNode.op = 'Const'
shapeNode.addAttr('value', shape)
graph_def.node.extend([shapeNode])
reshape = NodeDef()
reshape.name = out
reshape.op = 'Reshape'
reshape.input.append(inp)
reshape.input.append(shapeNode.name)
graph_def.node.extend([reshape])
def addSoftMax(inp, out, graph_def):
softmax = NodeDef()
softmax.name = out
softmax.op = 'Softmax'
softmax.addAttr('axis', -1)
softmax.input.append(inp)
graph_def.node.extend([softmax])
def addFlatten(inp, out, graph_def):
flatten = NodeDef()
flatten.name = out
flatten.op = 'Flatten'
flatten.input.append(inp)
graph_def.node.extend([flatten])
class NodeDef:
def __init__(self):
self.input = []
self.name = ""
self.op = ""
self.attr = {}
def addAttr(self, key, value):
assert(not key in self.attr)
if isinstance(value, bool):
self.attr[key] = {'b': value}
elif isinstance(value, int):
self.attr[key] = {'i': value}
elif isinstance(value, float):
self.attr[key] = {'f': value}
elif isinstance(value, str):
self.attr[key] = {'s': value}
elif isinstance(value, list):
self.attr[key] = listToTensor(value)
else:
raise Exception('Unknown type of attribute ' + key)
def Clear(self):
self.input = []
self.name = ""
self.op = ""
self.attr = {}
class GraphDef:
def __init__(self):
self.node = []
def save(self, filePath):
with open(filePath, 'wt') as f:
def printAttr(d, indent):
indent = ' ' * indent
for key, value in sorted(d.items(), key=lambda x:x[0].lower()):
value = value if isinstance(value, list) else [value]
for v in value:
if isinstance(v, dict):
f.write(indent + key + ' {\n')
printAttr(v, len(indent) + 2)
f.write(indent + '}\n')
else:
isString = False
if isinstance(v, str) and not v.startswith('DT_'):
try:
float(v)
except:
isString = True
if isinstance(v, bool):
printed = 'true' if v else 'false'
elif v == 'true' or v == 'false':
printed = 'true' if v == 'true' else 'false'
elif isString:
printed = '\"%s\"' % v
else:
printed = str(v)
f.write(indent + key + ': ' + printed + '\n')
for node in self.node:
f.write('node {\n')
f.write(' name: \"%s\"\n' % node.name)
f.write(' op: \"%s\"\n' % node.op)
for inp in node.input:
f.write(' input: \"%s\"\n' % inp)
for key, value in sorted(node.attr.items(), key=lambda x:x[0].lower()):
f.write(' attr {\n')
f.write(' key: \"%s\"\n' % key)
f.write(' value {\n')
printAttr(value, 6)
f.write(' }\n')
f.write(' }\n')
f.write('}\n')
def parseTextGraph(filePath):
msg = readTextMessage(filePath)
graph = GraphDef()
for node in msg['node']:
graphNode = NodeDef()
graphNode.name = node['name'][0]
graphNode.op = node['op'][0]
graphNode.input = node['input'] if 'input' in node else []
if 'attr' in node:
for attr in node['attr']:
graphNode.attr[attr['key'][0]] = attr['value'][0]
graph.node.append(graphNode)
return graph
# Removes Identity nodes
def removeIdentity(graph_def):
identities = {}
for node in graph_def.node:
if node.op == 'Identity' or node.op == 'IdentityN':
inp = node.input[0]
if inp in identities:
identities[node.name] = identities[inp]
else:
identities[node.name] = inp
graph_def.node.remove(node)
for node in graph_def.node:
for i in range(len(node.input)):
if node.input[i] in identities:
node.input[i] = identities[node.input[i]]
def removeUnusedNodesAndAttrs(to_remove, graph_def):
unusedAttrs = ['T', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu',
'Index', 'Tperm', 'is_training', 'Tpaddings']
removedNodes = []
for i in reversed(range(len(graph_def.node))):
op = graph_def.node[i].op
name = graph_def.node[i].name
if to_remove(name, op):
if op != 'Const':
removedNodes.append(name)
del graph_def.node[i]
else:
for attr in unusedAttrs:
if attr in graph_def.node[i].attr:
del graph_def.node[i].attr[attr]
# Remove references to removed nodes except Const nodes.
for node in graph_def.node:
for i in reversed(range(len(node.input))):
if node.input[i] in removedNodes:
del node.input[i]
def writeTextGraph(modelPath, outputPath, outNodes):
try:
import cv2 as cv
cv.dnn.writeTextGraph(modelPath, outputPath)
except:
import tensorflow as tf
from tensorflow.tools.graph_transforms import TransformGraph
with tf.gfile.FastGFile(modelPath, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
graph_def = TransformGraph(graph_def, ['image_tensor'], outNodes, ['sort_by_execution_order'])
for node in graph_def.node:
if node.op == 'Const':
if 'value' in node.attr and node.attr['value'].tensor.tensor_content:
node.attr['value'].tensor.tensor_content = b''
tf.train.write_graph(graph_def, "", outputPath, as_text=True)
|