1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
import java.util.Random;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.TermCriteria;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.ml.Ml;
import org.opencv.ml.SVM;
public class NonLinearSVMsDemo {
public static final int NTRAINING_SAMPLES = 100;
public static final float FRAC_LINEAR_SEP = 0.9f;
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
System.out.println("\n--------------------------------------------------------------------------");
System.out.println("This program shows Support Vector Machines for Non-Linearly Separable Data. ");
System.out.println("--------------------------------------------------------------------------\n");
// Data for visual representation
int width = 512, height = 512;
Mat I = Mat.zeros(height, width, CvType.CV_8UC3);
// --------------------- 1. Set up training data randomly---------------------------------------
Mat trainData = new Mat(2 * NTRAINING_SAMPLES, 2, CvType.CV_32F);
Mat labels = new Mat(2 * NTRAINING_SAMPLES, 1, CvType.CV_32S);
Random rng = new Random(100); // Random value generation class
// Set up the linearly separable part of the training data
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
//! [setup1]
// Generate random points for the class 1
Mat trainClass = trainData.rowRange(0, nLinearSamples);
// The x coordinate of the points is in [0, 0.4)
Mat c = trainClass.colRange(0, 1);
float[] cData = new float[(int) (c.total() * c.channels())];
double[] cDataDbl = rng.doubles(cData.length, 0, 0.4f * width).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1, 2);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0, height).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
// Generate random points for the class 2
trainClass = trainData.rowRange(2 * NTRAINING_SAMPLES - nLinearSamples, 2 * NTRAINING_SAMPLES);
// The x coordinate of the points is in [0.6, 1]
c = trainClass.colRange(0, 1);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0.6 * width, width).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1, 2);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0, height).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
//! [setup1]
// ------------------ Set up the non-linearly separable part of the training data ---------------
//! [setup2]
// Generate random points for the classes 1 and 2
trainClass = trainData.rowRange(nLinearSamples, 2 * NTRAINING_SAMPLES - nLinearSamples);
// The x coordinate of the points is in [0.4, 0.6)
c = trainClass.colRange(0, 1);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0.4 * width, 0.6 * width).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1, 2);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0, height).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
//! [setup2]
// ------------------------- Set up the labels for the classes---------------------------------
labels.rowRange(0, NTRAINING_SAMPLES).setTo(new Scalar(1)); // Class 1
labels.rowRange(NTRAINING_SAMPLES, 2 * NTRAINING_SAMPLES).setTo(new Scalar(2)); // Class 2
// ------------------------ 2. Set up the support vector machines parameters--------------------
System.out.println("Starting training process");
//! [init]
SVM svm = SVM.create();
svm.setType(SVM.C_SVC);
svm.setC(0.1);
svm.setKernel(SVM.LINEAR);
svm.setTermCriteria(new TermCriteria(TermCriteria.MAX_ITER, (int) 1e7, 1e-6));
//! [init]
// ------------------------ 3. Train the svm----------------------------------------------------
//! [train]
svm.train(trainData, Ml.ROW_SAMPLE, labels);
//! [train]
System.out.println("Finished training process");
// ------------------------ 4. Show the decision regions----------------------------------------
//! [show]
byte[] IData = new byte[(int) (I.total() * I.channels())];
Mat sampleMat = new Mat(1, 2, CvType.CV_32F);
float[] sampleMatData = new float[(int) (sampleMat.total() * sampleMat.channels())];
for (int i = 0; i < I.rows(); i++) {
for (int j = 0; j < I.cols(); j++) {
sampleMatData[0] = j;
sampleMatData[1] = i;
sampleMat.put(0, 0, sampleMatData);
float response = svm.predict(sampleMat);
if (response == 1) {
IData[(i * I.cols() + j) * I.channels()] = 0;
IData[(i * I.cols() + j) * I.channels() + 1] = 100;
IData[(i * I.cols() + j) * I.channels() + 2] = 0;
} else if (response == 2) {
IData[(i * I.cols() + j) * I.channels()] = 100;
IData[(i * I.cols() + j) * I.channels() + 1] = 0;
IData[(i * I.cols() + j) * I.channels() + 2] = 0;
}
}
}
I.put(0, 0, IData);
//! [show]
// ----------------------- 5. Show the training data--------------------------------------------
//! [show_data]
int thick = -1;
int lineType = Imgproc.LINE_8;
float px, py;
// Class 1
float[] trainDataData = new float[(int) (trainData.total() * trainData.channels())];
trainData.get(0, 0, trainDataData);
for (int i = 0; i < NTRAINING_SAMPLES; i++) {
px = trainDataData[i * trainData.cols()];
py = trainDataData[i * trainData.cols() + 1];
Imgproc.circle(I, new Point(px, py), 3, new Scalar(0, 255, 0), thick, lineType, 0);
}
// Class 2
for (int i = NTRAINING_SAMPLES; i < 2 * NTRAINING_SAMPLES; ++i) {
px = trainDataData[i * trainData.cols()];
py = trainDataData[i * trainData.cols() + 1];
Imgproc.circle(I, new Point(px, py), 3, new Scalar(255, 0, 0), thick, lineType, 0);
}
//! [show_data]
// ------------------------- 6. Show support vectors--------------------------------------------
//! [show_vectors]
thick = 2;
Mat sv = svm.getUncompressedSupportVectors();
float[] svData = new float[(int) (sv.total() * sv.channels())];
sv.get(0, 0, svData);
for (int i = 0; i < sv.rows(); i++) {
Imgproc.circle(I, new Point(svData[i * sv.cols()], svData[i * sv.cols() + 1]), 6, new Scalar(128, 128, 128),
thick, lineType, 0);
}
//! [show_vectors]
Imgcodecs.imwrite("result.png", I); // save the Image
HighGui.imshow("SVM for Non-Linear Training Data", I); // show it to the user
HighGui.waitKey();
System.exit(0);
}
}
|