1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
|
/*
// The example of interoperability between OpenCL and OpenCV.
// This will loop through frames of video either from input media file
// or camera device and do processing of these data in OpenCL and then
// in OpenCV. In OpenCL it does inversion of pixels in left half of frame and
// in OpenCV it does blurring in the right half of frame.
*/
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <iomanip>
#include <stdexcept>
#define CL_USE_DEPRECATED_OPENCL_1_1_APIS
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
#define CL_USE_DEPRECATED_OPENCL_2_0_APIS // eliminate build warning
#define CL_TARGET_OPENCL_VERSION 200 // 2.0
#ifdef __APPLE__
#define CL_SILENCE_DEPRECATION
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif
#include <opencv2/core/ocl.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/video.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;
namespace opencl {
class PlatformInfo
{
public:
PlatformInfo()
{}
~PlatformInfo()
{}
cl_int QueryInfo(cl_platform_id id)
{
query_param(id, CL_PLATFORM_PROFILE, m_profile);
query_param(id, CL_PLATFORM_VERSION, m_version);
query_param(id, CL_PLATFORM_NAME, m_name);
query_param(id, CL_PLATFORM_VENDOR, m_vendor);
query_param(id, CL_PLATFORM_EXTENSIONS, m_extensions);
return CL_SUCCESS;
}
std::string Profile() { return m_profile; }
std::string Version() { return m_version; }
std::string Name() { return m_name; }
std::string Vendor() { return m_vendor; }
std::string Extensions() { return m_extensions; }
private:
cl_int query_param(cl_platform_id id, cl_platform_info param, std::string& paramStr)
{
cl_int res;
size_t psize;
cv::AutoBuffer<char> buf;
res = clGetPlatformInfo(id, param, 0, 0, &psize);
if (CL_SUCCESS != res)
throw std::runtime_error(std::string("clGetPlatformInfo failed"));
buf.resize(psize);
res = clGetPlatformInfo(id, param, psize, buf, 0);
if (CL_SUCCESS != res)
throw std::runtime_error(std::string("clGetPlatformInfo failed"));
// just in case, ensure trailing zero for ASCIIZ string
buf[psize] = 0;
paramStr = buf;
return CL_SUCCESS;
}
private:
std::string m_profile;
std::string m_version;
std::string m_name;
std::string m_vendor;
std::string m_extensions;
};
class DeviceInfo
{
public:
DeviceInfo()
{}
~DeviceInfo()
{}
cl_int QueryInfo(cl_device_id id)
{
query_param(id, CL_DEVICE_TYPE, m_type);
query_param(id, CL_DEVICE_VENDOR_ID, m_vendor_id);
query_param(id, CL_DEVICE_MAX_COMPUTE_UNITS, m_max_compute_units);
query_param(id, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, m_max_work_item_dimensions);
query_param(id, CL_DEVICE_MAX_WORK_ITEM_SIZES, m_max_work_item_sizes);
query_param(id, CL_DEVICE_MAX_WORK_GROUP_SIZE, m_max_work_group_size);
query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR, m_preferred_vector_width_char);
query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, m_preferred_vector_width_short);
query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, m_preferred_vector_width_int);
query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, m_preferred_vector_width_long);
query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, m_preferred_vector_width_float);
query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, m_preferred_vector_width_double);
#if defined(CL_VERSION_1_1)
query_param(id, CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF, m_preferred_vector_width_half);
query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR, m_native_vector_width_char);
query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT, m_native_vector_width_short);
query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_INT, m_native_vector_width_int);
query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG, m_native_vector_width_long);
query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT, m_native_vector_width_float);
query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE, m_native_vector_width_double);
query_param(id, CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF, m_native_vector_width_half);
#endif
query_param(id, CL_DEVICE_MAX_CLOCK_FREQUENCY, m_max_clock_frequency);
query_param(id, CL_DEVICE_ADDRESS_BITS, m_address_bits);
query_param(id, CL_DEVICE_MAX_MEM_ALLOC_SIZE, m_max_mem_alloc_size);
query_param(id, CL_DEVICE_IMAGE_SUPPORT, m_image_support);
query_param(id, CL_DEVICE_MAX_READ_IMAGE_ARGS, m_max_read_image_args);
query_param(id, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, m_max_write_image_args);
#if defined(CL_VERSION_2_0)
query_param(id, CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS, m_max_read_write_image_args);
#endif
query_param(id, CL_DEVICE_IMAGE2D_MAX_WIDTH, m_image2d_max_width);
query_param(id, CL_DEVICE_IMAGE2D_MAX_HEIGHT, m_image2d_max_height);
query_param(id, CL_DEVICE_IMAGE3D_MAX_WIDTH, m_image3d_max_width);
query_param(id, CL_DEVICE_IMAGE3D_MAX_HEIGHT, m_image3d_max_height);
query_param(id, CL_DEVICE_IMAGE3D_MAX_DEPTH, m_image3d_max_depth);
#if defined(CL_VERSION_1_2)
query_param(id, CL_DEVICE_IMAGE_MAX_BUFFER_SIZE, m_image_max_buffer_size);
query_param(id, CL_DEVICE_IMAGE_MAX_ARRAY_SIZE, m_image_max_array_size);
#endif
query_param(id, CL_DEVICE_MAX_SAMPLERS, m_max_samplers);
#if defined(CL_VERSION_1_2)
query_param(id, CL_DEVICE_IMAGE_PITCH_ALIGNMENT, m_image_pitch_alignment);
query_param(id, CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT, m_image_base_address_alignment);
#endif
#if defined(CL_VERSION_2_0)
query_param(id, CL_DEVICE_MAX_PIPE_ARGS, m_max_pipe_args);
query_param(id, CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATIONS, m_pipe_max_active_reservations);
query_param(id, CL_DEVICE_PIPE_MAX_PACKET_SIZE, m_pipe_max_packet_size);
#endif
query_param(id, CL_DEVICE_MAX_PARAMETER_SIZE, m_max_parameter_size);
query_param(id, CL_DEVICE_MEM_BASE_ADDR_ALIGN, m_mem_base_addr_align);
query_param(id, CL_DEVICE_SINGLE_FP_CONFIG, m_single_fp_config);
#if defined(CL_VERSION_1_2)
query_param(id, CL_DEVICE_DOUBLE_FP_CONFIG, m_double_fp_config);
#endif
query_param(id, CL_DEVICE_GLOBAL_MEM_CACHE_TYPE, m_global_mem_cache_type);
query_param(id, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, m_global_mem_cacheline_size);
query_param(id, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, m_global_mem_cache_size);
query_param(id, CL_DEVICE_GLOBAL_MEM_SIZE, m_global_mem_size);
query_param(id, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, m_max_constant_buffer_size);
query_param(id, CL_DEVICE_MAX_CONSTANT_ARGS, m_max_constant_args);
#if defined(CL_VERSION_2_0)
query_param(id, CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE, m_max_global_variable_size);
query_param(id, CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_TOTAL_SIZE, m_global_variable_preferred_total_size);
#endif
query_param(id, CL_DEVICE_LOCAL_MEM_TYPE, m_local_mem_type);
query_param(id, CL_DEVICE_LOCAL_MEM_SIZE, m_local_mem_size);
query_param(id, CL_DEVICE_ERROR_CORRECTION_SUPPORT, m_error_correction_support);
#if defined(CL_VERSION_1_1)
query_param(id, CL_DEVICE_HOST_UNIFIED_MEMORY, m_host_unified_memory);
#endif
query_param(id, CL_DEVICE_PROFILING_TIMER_RESOLUTION, m_profiling_timer_resolution);
query_param(id, CL_DEVICE_ENDIAN_LITTLE, m_endian_little);
query_param(id, CL_DEVICE_AVAILABLE, m_available);
query_param(id, CL_DEVICE_COMPILER_AVAILABLE, m_compiler_available);
#if defined(CL_VERSION_1_2)
query_param(id, CL_DEVICE_LINKER_AVAILABLE, m_linker_available);
#endif
query_param(id, CL_DEVICE_EXECUTION_CAPABILITIES, m_execution_capabilities);
query_param(id, CL_DEVICE_QUEUE_PROPERTIES, m_queue_properties);
#if defined(CL_VERSION_2_0)
query_param(id, CL_DEVICE_QUEUE_ON_HOST_PROPERTIES, m_queue_on_host_properties);
query_param(id, CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES, m_queue_on_device_properties);
query_param(id, CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE, m_queue_on_device_preferred_size);
query_param(id, CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE, m_queue_on_device_max_size);
query_param(id, CL_DEVICE_MAX_ON_DEVICE_QUEUES, m_max_on_device_queues);
query_param(id, CL_DEVICE_MAX_ON_DEVICE_EVENTS, m_max_on_device_events);
#endif
#if defined(CL_VERSION_1_2)
query_param(id, CL_DEVICE_BUILT_IN_KERNELS, m_built_in_kernels);
#endif
query_param(id, CL_DEVICE_PLATFORM, m_platform);
query_param(id, CL_DEVICE_NAME, m_name);
query_param(id, CL_DEVICE_VENDOR, m_vendor);
query_param(id, CL_DRIVER_VERSION, m_driver_version);
query_param(id, CL_DEVICE_PROFILE, m_profile);
query_param(id, CL_DEVICE_VERSION, m_version);
#if defined(CL_VERSION_1_1)
query_param(id, CL_DEVICE_OPENCL_C_VERSION, m_opencl_c_version);
#endif
query_param(id, CL_DEVICE_EXTENSIONS, m_extensions);
#if defined(CL_VERSION_1_2)
query_param(id, CL_DEVICE_PRINTF_BUFFER_SIZE, m_printf_buffer_size);
query_param(id, CL_DEVICE_PREFERRED_INTEROP_USER_SYNC, m_preferred_interop_user_sync);
query_param(id, CL_DEVICE_PARENT_DEVICE, m_parent_device);
query_param(id, CL_DEVICE_PARTITION_MAX_SUB_DEVICES, m_partition_max_sub_devices);
query_param(id, CL_DEVICE_PARTITION_PROPERTIES, m_partition_properties);
query_param(id, CL_DEVICE_PARTITION_AFFINITY_DOMAIN, m_partition_affinity_domain);
query_param(id, CL_DEVICE_PARTITION_TYPE, m_partition_type);
query_param(id, CL_DEVICE_REFERENCE_COUNT, m_reference_count);
#endif
return CL_SUCCESS;
}
std::string Name() { return m_name; }
private:
template<typename T>
cl_int query_param(cl_device_id id, cl_device_info param, T& value)
{
cl_int res;
size_t size = 0;
res = clGetDeviceInfo(id, param, 0, 0, &size);
if (CL_SUCCESS != res && size != 0)
throw std::runtime_error(std::string("clGetDeviceInfo failed"));
if (0 == size)
return CL_SUCCESS;
if (sizeof(T) != size)
throw std::runtime_error(std::string("clGetDeviceInfo: param size mismatch"));
res = clGetDeviceInfo(id, param, size, &value, 0);
if (CL_SUCCESS != res)
throw std::runtime_error(std::string("clGetDeviceInfo failed"));
return CL_SUCCESS;
}
template<typename T>
cl_int query_param(cl_device_id id, cl_device_info param, std::vector<T>& value)
{
cl_int res;
size_t size;
res = clGetDeviceInfo(id, param, 0, 0, &size);
if (CL_SUCCESS != res)
throw std::runtime_error(std::string("clGetDeviceInfo failed"));
if (0 == size)
return CL_SUCCESS;
value.resize(size / sizeof(T));
res = clGetDeviceInfo(id, param, size, &value[0], 0);
if (CL_SUCCESS != res)
throw std::runtime_error(std::string("clGetDeviceInfo failed"));
return CL_SUCCESS;
}
cl_int query_param(cl_device_id id, cl_device_info param, std::string& value)
{
cl_int res;
size_t size;
res = clGetDeviceInfo(id, param, 0, 0, &size);
if (CL_SUCCESS != res)
throw std::runtime_error(std::string("clGetDeviceInfo failed"));
value.resize(size + 1);
res = clGetDeviceInfo(id, param, size, &value[0], 0);
if (CL_SUCCESS != res)
throw std::runtime_error(std::string("clGetDeviceInfo failed"));
// just in case, ensure trailing zero for ASCIIZ string
value[size] = 0;
return CL_SUCCESS;
}
private:
cl_device_type m_type;
cl_uint m_vendor_id;
cl_uint m_max_compute_units;
cl_uint m_max_work_item_dimensions;
std::vector<size_t> m_max_work_item_sizes;
size_t m_max_work_group_size;
cl_uint m_preferred_vector_width_char;
cl_uint m_preferred_vector_width_short;
cl_uint m_preferred_vector_width_int;
cl_uint m_preferred_vector_width_long;
cl_uint m_preferred_vector_width_float;
cl_uint m_preferred_vector_width_double;
#if defined(CL_VERSION_1_1)
cl_uint m_preferred_vector_width_half;
cl_uint m_native_vector_width_char;
cl_uint m_native_vector_width_short;
cl_uint m_native_vector_width_int;
cl_uint m_native_vector_width_long;
cl_uint m_native_vector_width_float;
cl_uint m_native_vector_width_double;
cl_uint m_native_vector_width_half;
#endif
cl_uint m_max_clock_frequency;
cl_uint m_address_bits;
cl_ulong m_max_mem_alloc_size;
cl_bool m_image_support;
cl_uint m_max_read_image_args;
cl_uint m_max_write_image_args;
#if defined(CL_VERSION_2_0)
cl_uint m_max_read_write_image_args;
#endif
size_t m_image2d_max_width;
size_t m_image2d_max_height;
size_t m_image3d_max_width;
size_t m_image3d_max_height;
size_t m_image3d_max_depth;
#if defined(CL_VERSION_1_2)
size_t m_image_max_buffer_size;
size_t m_image_max_array_size;
#endif
cl_uint m_max_samplers;
#if defined(CL_VERSION_1_2)
cl_uint m_image_pitch_alignment;
cl_uint m_image_base_address_alignment;
#endif
#if defined(CL_VERSION_2_0)
cl_uint m_max_pipe_args;
cl_uint m_pipe_max_active_reservations;
cl_uint m_pipe_max_packet_size;
#endif
size_t m_max_parameter_size;
cl_uint m_mem_base_addr_align;
cl_device_fp_config m_single_fp_config;
#if defined(CL_VERSION_1_2)
cl_device_fp_config m_double_fp_config;
#endif
cl_device_mem_cache_type m_global_mem_cache_type;
cl_uint m_global_mem_cacheline_size;
cl_ulong m_global_mem_cache_size;
cl_ulong m_global_mem_size;
cl_ulong m_max_constant_buffer_size;
cl_uint m_max_constant_args;
#if defined(CL_VERSION_2_0)
size_t m_max_global_variable_size;
size_t m_global_variable_preferred_total_size;
#endif
cl_device_local_mem_type m_local_mem_type;
cl_ulong m_local_mem_size;
cl_bool m_error_correction_support;
#if defined(CL_VERSION_1_1)
cl_bool m_host_unified_memory;
#endif
size_t m_profiling_timer_resolution;
cl_bool m_endian_little;
cl_bool m_available;
cl_bool m_compiler_available;
#if defined(CL_VERSION_1_2)
cl_bool m_linker_available;
#endif
cl_device_exec_capabilities m_execution_capabilities;
cl_command_queue_properties m_queue_properties;
#if defined(CL_VERSION_2_0)
cl_command_queue_properties m_queue_on_host_properties;
cl_command_queue_properties m_queue_on_device_properties;
cl_uint m_queue_on_device_preferred_size;
cl_uint m_queue_on_device_max_size;
cl_uint m_max_on_device_queues;
cl_uint m_max_on_device_events;
#endif
#if defined(CL_VERSION_1_2)
std::string m_built_in_kernels;
#endif
cl_platform_id m_platform;
std::string m_name;
std::string m_vendor;
std::string m_driver_version;
std::string m_profile;
std::string m_version;
#if defined(CL_VERSION_1_1)
std::string m_opencl_c_version;
#endif
std::string m_extensions;
#if defined(CL_VERSION_1_2)
size_t m_printf_buffer_size;
cl_bool m_preferred_interop_user_sync;
cl_device_id m_parent_device;
cl_uint m_partition_max_sub_devices;
std::vector<cl_device_partition_property> m_partition_properties;
cl_device_affinity_domain m_partition_affinity_domain;
std::vector<cl_device_partition_property> m_partition_type;
cl_uint m_reference_count;
#endif
};
} // namespace opencl
class App
{
public:
App(CommandLineParser& cmd);
~App();
int initOpenCL();
int initVideoSource();
int process_frame_with_open_cl(cv::Mat& frame, bool use_buffer, cl_mem* cl_buffer);
int process_cl_buffer_with_opencv(cl_mem buffer, size_t step, int rows, int cols, int type, cv::UMat& u);
int process_cl_image_with_opencv(cl_mem image, cv::UMat& u);
int run();
bool isRunning() { return m_running; }
bool doProcess() { return m_process; }
bool useBuffer() { return m_use_buffer; }
void setRunning(bool running) { m_running = running; }
void setDoProcess(bool process) { m_process = process; }
void setUseBuffer(bool use_buffer) { m_use_buffer = use_buffer; }
protected:
bool nextFrame(cv::Mat& frame) { return m_cap.read(frame); }
void handleKey(char key);
void timerStart();
void timerEnd();
std::string timeStr() const;
std::string message() const;
private:
bool m_running;
bool m_process;
bool m_use_buffer;
int64 m_t0;
int64 m_t1;
float m_time;
float m_frequency;
string m_file_name;
int m_camera_id;
cv::VideoCapture m_cap;
cv::Mat m_frame;
cv::Mat m_frameGray;
opencl::PlatformInfo m_platformInfo;
opencl::DeviceInfo m_deviceInfo;
std::vector<cl_platform_id> m_platform_ids;
cl_context m_context;
cl_device_id m_device_id;
cl_command_queue m_queue;
cl_program m_program;
cl_kernel m_kernelBuf;
cl_kernel m_kernelImg;
cl_mem m_img_src; // used as src in case processing of cl image
cl_mem m_mem_obj;
};
App::App(CommandLineParser& cmd)
{
cout << "\nPress ESC to exit\n" << endl;
cout << "\n 'p' to toggle ON/OFF processing\n" << endl;
cout << "\n SPACE to switch between OpenCL buffer/image\n" << endl;
m_camera_id = cmd.get<int>("camera");
m_file_name = cmd.get<string>("video");
m_running = false;
m_process = false;
m_use_buffer = false;
m_t0 = 0;
m_t1 = 0;
m_time = 0.0;
m_frequency = (float)cv::getTickFrequency();
m_context = 0;
m_device_id = 0;
m_queue = 0;
m_program = 0;
m_kernelBuf = 0;
m_kernelImg = 0;
m_img_src = 0;
m_mem_obj = 0;
} // ctor
App::~App()
{
if (m_queue)
{
clFinish(m_queue);
clReleaseCommandQueue(m_queue);
m_queue = 0;
}
if (m_program)
{
clReleaseProgram(m_program);
m_program = 0;
}
if (m_img_src)
{
clReleaseMemObject(m_img_src);
m_img_src = 0;
}
if (m_mem_obj)
{
clReleaseMemObject(m_mem_obj);
m_mem_obj = 0;
}
if (m_kernelBuf)
{
clReleaseKernel(m_kernelBuf);
m_kernelBuf = 0;
}
if (m_kernelImg)
{
clReleaseKernel(m_kernelImg);
m_kernelImg = 0;
}
if (m_device_id)
{
clReleaseDevice(m_device_id);
m_device_id = 0;
}
if (m_context)
{
clReleaseContext(m_context);
m_context = 0;
}
} // dtor
int App::initOpenCL()
{
cl_int res = CL_SUCCESS;
cl_uint num_entries = 0;
res = clGetPlatformIDs(0, 0, &num_entries);
if (CL_SUCCESS != res)
return -1;
m_platform_ids.resize(num_entries);
res = clGetPlatformIDs(num_entries, &m_platform_ids[0], 0);
if (CL_SUCCESS != res)
return -1;
unsigned int i;
// create context from first platform with GPU device
for (i = 0; i < m_platform_ids.size(); i++)
{
cl_context_properties props[] =
{
CL_CONTEXT_PLATFORM,
(cl_context_properties)(m_platform_ids[i]),
0
};
m_context = clCreateContextFromType(props, CL_DEVICE_TYPE_GPU, 0, 0, &res);
if (0 == m_context || CL_SUCCESS != res)
continue;
res = clGetContextInfo(m_context, CL_CONTEXT_DEVICES, sizeof(cl_device_id), &m_device_id, 0);
if (CL_SUCCESS != res)
return -1;
m_queue = clCreateCommandQueue(m_context, m_device_id, 0, &res);
if (0 == m_queue || CL_SUCCESS != res)
return -1;
const char* kernelSrc =
"__kernel "
"void bitwise_inv_buf_8uC1("
" __global unsigned char* pSrcDst,"
" int srcDstStep,"
" int rows,"
" int cols)"
"{"
" int x = get_global_id(0);"
" int y = get_global_id(1);"
" int idx = mad24(y, srcDstStep, x);"
" pSrcDst[idx] = ~pSrcDst[idx];"
"}"
"__kernel "
"void bitwise_inv_img_8uC1("
" read_only image2d_t srcImg,"
" write_only image2d_t dstImg)"
"{"
" int x = get_global_id(0);"
" int y = get_global_id(1);"
" int2 coord = (int2)(x, y);"
" uint4 val = read_imageui(srcImg, coord);"
" val.x = (~val.x) & 0x000000FF;"
" write_imageui(dstImg, coord, val);"
"}";
size_t len = strlen(kernelSrc);
m_program = clCreateProgramWithSource(m_context, 1, &kernelSrc, &len, &res);
if (0 == m_program || CL_SUCCESS != res)
return -1;
res = clBuildProgram(m_program, 1, &m_device_id, 0, 0, 0);
if (CL_SUCCESS != res)
return -1;
m_kernelBuf = clCreateKernel(m_program, "bitwise_inv_buf_8uC1", &res);
if (0 == m_kernelBuf || CL_SUCCESS != res)
return -1;
m_kernelImg = clCreateKernel(m_program, "bitwise_inv_img_8uC1", &res);
if (0 == m_kernelImg || CL_SUCCESS != res)
return -1;
m_platformInfo.QueryInfo(m_platform_ids[i]);
m_deviceInfo.QueryInfo(m_device_id);
// attach OpenCL context to OpenCV
cv::ocl::attachContext(m_platformInfo.Name(), m_platform_ids[i], m_context, m_device_id);
break;
}
return m_context != 0 ? CL_SUCCESS : -1;
} // initOpenCL()
int App::initVideoSource()
{
try
{
if (!m_file_name.empty() && m_camera_id == -1)
{
m_cap.open(m_file_name.c_str());
if (!m_cap.isOpened())
throw std::runtime_error(std::string("can't open video file: " + m_file_name));
}
else if (m_camera_id != -1)
{
m_cap.open(m_camera_id);
if (!m_cap.isOpened())
{
std::stringstream msg;
msg << "can't open camera: " << m_camera_id;
throw std::runtime_error(msg.str());
}
}
else
throw std::runtime_error(std::string("specify video source"));
}
catch (const std::exception& e)
{
cerr << "ERROR: " << e.what() << std::endl;
return -1;
}
return 0;
} // initVideoSource()
// this function is an example of "typical" OpenCL processing pipeline
// It creates OpenCL buffer or image, depending on use_buffer flag,
// from input media frame and process these data
// (inverts each pixel value in half of frame) with OpenCL kernel
int App::process_frame_with_open_cl(cv::Mat& frame, bool use_buffer, cl_mem* mem_obj)
{
cl_int res = CL_SUCCESS;
CV_Assert(mem_obj);
cl_kernel kernel = 0;
cl_mem mem = mem_obj[0];
if (0 == mem || 0 == m_img_src)
{
// allocate/delete cl memory objects every frame for the simplicity.
// in real application more efficient pipeline can be built.
if (use_buffer)
{
cl_mem_flags flags = CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR;
mem = clCreateBuffer(m_context, flags, frame.total(), frame.ptr(), &res);
if (0 == mem || CL_SUCCESS != res)
return -1;
res = clSetKernelArg(m_kernelBuf, 0, sizeof(cl_mem), &mem);
if (CL_SUCCESS != res)
return -1;
res = clSetKernelArg(m_kernelBuf, 1, sizeof(int), &frame.step[0]);
if (CL_SUCCESS != res)
return -1;
res = clSetKernelArg(m_kernelBuf, 2, sizeof(int), &frame.rows);
if (CL_SUCCESS != res)
return -1;
int cols2 = frame.cols / 2;
res = clSetKernelArg(m_kernelBuf, 3, sizeof(int), &cols2);
if (CL_SUCCESS != res)
return -1;
kernel = m_kernelBuf;
}
else
{
cl_mem_flags flags_src = CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR;
cl_image_format fmt;
fmt.image_channel_order = CL_R;
fmt.image_channel_data_type = CL_UNSIGNED_INT8;
cl_image_desc desc_src;
desc_src.image_type = CL_MEM_OBJECT_IMAGE2D;
desc_src.image_width = frame.cols;
desc_src.image_height = frame.rows;
desc_src.image_depth = 0;
desc_src.image_array_size = 0;
desc_src.image_row_pitch = frame.step[0];
desc_src.image_slice_pitch = 0;
desc_src.num_mip_levels = 0;
desc_src.num_samples = 0;
desc_src.buffer = 0;
m_img_src = clCreateImage(m_context, flags_src, &fmt, &desc_src, frame.ptr(), &res);
if (0 == m_img_src || CL_SUCCESS != res)
return -1;
cl_mem_flags flags_dst = CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR;
cl_image_desc desc_dst;
desc_dst.image_type = CL_MEM_OBJECT_IMAGE2D;
desc_dst.image_width = frame.cols;
desc_dst.image_height = frame.rows;
desc_dst.image_depth = 0;
desc_dst.image_array_size = 0;
desc_dst.image_row_pitch = 0;
desc_dst.image_slice_pitch = 0;
desc_dst.num_mip_levels = 0;
desc_dst.num_samples = 0;
desc_dst.buffer = 0;
mem = clCreateImage(m_context, flags_dst, &fmt, &desc_dst, 0, &res);
if (0 == mem || CL_SUCCESS != res)
return -1;
size_t origin[] = { 0, 0, 0 };
size_t region[] = { (size_t)frame.cols, (size_t)frame.rows, 1 };
cl_event asyncEvent = 0;
res = clEnqueueCopyImage(m_queue, m_img_src, mem, origin, origin, region, 0, 0, &asyncEvent);
if (CL_SUCCESS != res)
return -1;
res = clWaitForEvents(1, &asyncEvent);
clReleaseEvent(asyncEvent);
if (CL_SUCCESS != res)
return -1;
res = clSetKernelArg(m_kernelImg, 0, sizeof(cl_mem), &m_img_src);
if (CL_SUCCESS != res)
return -1;
res = clSetKernelArg(m_kernelImg, 1, sizeof(cl_mem), &mem);
if (CL_SUCCESS != res)
return -1;
kernel = m_kernelImg;
}
}
// process left half of frame in OpenCL
size_t size[] = { (size_t)frame.cols / 2, (size_t)frame.rows };
cl_event asyncEvent = 0;
res = clEnqueueNDRangeKernel(m_queue, kernel, 2, 0, size, 0, 0, 0, &asyncEvent);
if (CL_SUCCESS != res)
return -1;
res = clWaitForEvents(1, &asyncEvent);
clReleaseEvent(asyncEvent);
if (CL_SUCCESS != res)
return -1;
mem_obj[0] = mem;
return 0;
}
// this function is an example of interoperability between OpenCL buffer
// and OpenCV UMat objects. It converts (without copying data) OpenCL buffer
// to OpenCV UMat and then do blur on these data
int App::process_cl_buffer_with_opencv(cl_mem buffer, size_t step, int rows, int cols, int type, cv::UMat& u)
{
cv::ocl::convertFromBuffer(buffer, step, rows, cols, type, u);
// process right half of frame in OpenCV
cv::Point pt(u.cols / 2, 0);
cv::Size sz(u.cols / 2, u.rows);
cv::Rect roi(pt, sz);
cv::UMat uroi(u, roi);
cv::blur(uroi, uroi, cv::Size(7, 7), cv::Point(-3, -3));
if (buffer)
clReleaseMemObject(buffer);
m_mem_obj = 0;
return 0;
}
// this function is an example of interoperability between OpenCL image
// and OpenCV UMat objects. It converts OpenCL image
// to OpenCV UMat and then do blur on these data
int App::process_cl_image_with_opencv(cl_mem image, cv::UMat& u)
{
cv::ocl::convertFromImage(image, u);
// process right half of frame in OpenCV
cv::Point pt(u.cols / 2, 0);
cv::Size sz(u.cols / 2, u.rows);
cv::Rect roi(pt, sz);
cv::UMat uroi(u, roi);
cv::blur(uroi, uroi, cv::Size(7, 7), cv::Point(-3, -3));
if (image)
clReleaseMemObject(image);
m_mem_obj = 0;
if (m_img_src)
clReleaseMemObject(m_img_src);
m_img_src = 0;
return 0;
}
int App::run()
{
if (0 != initOpenCL())
return -1;
if (0 != initVideoSource())
return -1;
Mat img_to_show;
// set running state until ESC pressed
setRunning(true);
// set process flag to show some data processing
// can be toggled on/off by 'p' button
setDoProcess(true);
// set use buffer flag,
// when it is set to true, will demo interop opencl buffer and cv::Umat,
// otherwise demo interop opencl image and cv::UMat
// can be switched on/of by SPACE button
setUseBuffer(true);
// Iterate over all frames
while (isRunning() && nextFrame(m_frame))
{
cv::cvtColor(m_frame, m_frameGray, COLOR_BGR2GRAY);
UMat uframe;
// work
timerStart();
if (doProcess())
{
process_frame_with_open_cl(m_frameGray, useBuffer(), &m_mem_obj);
if (useBuffer())
process_cl_buffer_with_opencv(
m_mem_obj, m_frameGray.step[0], m_frameGray.rows, m_frameGray.cols, m_frameGray.type(), uframe);
else
process_cl_image_with_opencv(m_mem_obj, uframe);
}
else
{
m_frameGray.copyTo(uframe);
}
timerEnd();
uframe.copyTo(img_to_show);
putText(img_to_show, "Version : " + m_platformInfo.Version(), Point(5, 30), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, "Name : " + m_platformInfo.Name(), Point(5, 60), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, "Device : " + m_deviceInfo.Name(), Point(5, 90), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
cv::String memtype = useBuffer() ? "buffer" : "image";
putText(img_to_show, "interop with OpenCL " + memtype, Point(5, 120), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, "Time : " + timeStr() + " msec", Point(5, 150), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
imshow("opencl_interop", img_to_show);
handleKey((char)waitKey(3));
}
return 0;
}
void App::handleKey(char key)
{
switch (key)
{
case 27:
setRunning(false);
break;
case ' ':
setUseBuffer(!useBuffer());
break;
case 'p':
case 'P':
setDoProcess( !doProcess() );
break;
default:
break;
}
}
inline void App::timerStart()
{
m_t0 = getTickCount();
}
inline void App::timerEnd()
{
m_t1 = getTickCount();
int64 delta = m_t1 - m_t0;
m_time = (delta / m_frequency) * 1000; // units msec
}
inline string App::timeStr() const
{
stringstream ss;
ss << std::fixed << std::setprecision(1) << m_time;
return ss.str();
}
int main(int argc, char** argv)
{
const char* keys =
"{ help h ? | | print help message }"
"{ camera c | -1 | use camera as input }"
"{ video v | | use video as input }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help"))
{
cmd.printMessage();
return EXIT_SUCCESS;
}
App app(cmd);
try
{
app.run();
}
catch (const cv::Exception& e)
{
cout << "error: " << e.what() << endl;
return 1;
}
catch (const std::exception& e)
{
cout << "error: " << e.what() << endl;
return 1;
}
catch (...)
{
cout << "unknown exception" << endl;
return 1;
}
return EXIT_SUCCESS;
} // main()
|