1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
import numpy as np
import cv2 as cv
import math
import argparse
class AudioDrawing:
'''
Used for drawing audio graphics
'''
def __init__(self, args):
self.inputType = args.inputType
self.draw = args.draw
self.graph = args.graph
self.audio = cv.samples.findFile(args.audio)
self.audioStream = args.audioStream
self.windowType = args.windowType
self.windLen = args.windLen
self.overlap = args.overlap
self.enableGrid = args.enableGrid
self.rows = args.rows
self.cols = args.cols
self.xmarkup = args.xmarkup
self.ymarkup = args.ymarkup
self.zmarkup = args.zmarkup
self.microTime = args.microTime
self.frameSizeTime = args.frameSizeTime
self.updateTime = args.updateTime
self.waitTime = args.waitTime
if self.initAndCheckArgs(args) is False:
exit()
def Draw(self):
if self.draw == "static":
if self.inputType == "file":
samplingRate, inputAudio = self.readAudioFile(self.audio)
elif self.inputType == "microphone":
samplingRate, inputAudio = self.readAudioMicrophone()
duration = len(inputAudio) // samplingRate
# since the dimensional grid is counted in integer seconds,
# if the input audio has an incomplete last second,
# then it is filled with zeros to complete
remainder = len(inputAudio) % samplingRate
if remainder != 0:
sizeToFullSec = samplingRate - remainder
zeroArr = np.zeros(sizeToFullSec)
inputAudio = np.concatenate((inputAudio, zeroArr), axis=0)
duration += 1
print("Update duration of audio to full second with ",
sizeToFullSec, " zero samples")
print("New number of samples ", len(inputAudio))
if duration <= self.xmarkup:
self.xmarkup = duration + 1
if self.graph == "ampl":
imgAmplitude = self.drawAmplitude(inputAudio)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, inputAudio, samplingRate)
cv.imshow("Display window", imgAmplitude)
cv.waitKey(0)
elif self.graph == "spec":
stft = self.STFT(inputAudio)
imgSpec = self.drawSpectrogram(stft)
imgSpec = self.drawSpectrogramColorbar(imgSpec, inputAudio, samplingRate, stft)
cv.imshow("Display window", imgSpec)
cv.waitKey(0)
elif self.graph == "ampl_and_spec":
imgAmplitude = self.drawAmplitude(inputAudio)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, inputAudio, samplingRate)
stft = self.STFT(inputAudio)
imgSpec = self.drawSpectrogram(stft)
imgSpec = self.drawSpectrogramColorbar(imgSpec, inputAudio, samplingRate, stft)
imgTotal = self.concatenateImages(imgAmplitude, imgSpec)
cv.imshow("Display window", imgTotal)
cv.waitKey(0)
elif self.draw == "dynamic":
if self.inputType == "file":
self.dynamicFile(self.audio)
elif self.inputType == "microphone":
self.dynamicMicrophone()
def readAudioFile(self, file):
cap = cv.VideoCapture(file)
params = [cv.CAP_PROP_AUDIO_STREAM, self.audioStream,
cv.CAP_PROP_VIDEO_STREAM, -1,
cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_16S]
params = np.asarray(params)
cap.open(file, cv.CAP_ANY, params)
if cap.isOpened() == False:
print("Error : Can't read audio file: '", self.audio, "' with audioStream = ", self.audioStream)
print("Error: problems with audio reading, check input arguments")
exit()
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))
frame = []
frame = np.asarray(frame)
inputAudio = []
while (1):
if (cap.grab()):
frame = []
frame = np.asarray(frame)
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
inputAudio.append(frame[1][0][i])
else:
break
inputAudio = np.asarray(inputAudio)
print("Number of samples: ", len(inputAudio))
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
return samplingRate, inputAudio
def readAudioMicrophone(self):
cap = cv.VideoCapture()
params = [cv.CAP_PROP_AUDIO_STREAM, 0, cv.CAP_PROP_VIDEO_STREAM, -1]
params = np.asarray(params)
cap.open(0, cv.CAP_ANY, params)
if cap.isOpened() == False:
print("Error: Can't open microphone")
print("Error: problems with audio reading, check input arguments")
exit()
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))
cvTickFreq = cv.getTickFrequency()
sysTimeCurr = cv.getTickCount()
sysTimePrev = sysTimeCurr
frame = []
frame = np.asarray(frame)
inputAudio = []
while ((sysTimeCurr - sysTimePrev) / cvTickFreq < self.microTime):
if (cap.grab()):
frame = []
frame = np.asarray(frame)
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
inputAudio.append(frame[1][0][i])
sysTimeCurr = cv.getTickCount()
else:
print("Error: Grab error")
break
inputAudio = np.asarray(inputAudio)
print("Number of samples: ", len(inputAudio))
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
return samplingRate, inputAudio
def drawAmplitude(self, inputAudio):
color = (247, 111, 87)
thickness = 5
frameVectorRows = 500
middle = frameVectorRows // 2
# usually the input data is too big, so it is necessary
# to reduce size using interpolation of data
frameVectorCols = 40000
if len(inputAudio) < frameVectorCols:
frameVectorCols = len(inputAudio)
img = np.zeros((frameVectorRows, frameVectorCols, 3), np.uint8)
img += 255 # white background
audio = np.array(0)
audio = cv.resize(inputAudio, (1, frameVectorCols), interpolation=cv.INTER_LINEAR)
reshapeAudio = np.reshape(audio, (-1))
# normalization data by maximum element
minCv, maxCv, _, _ = cv.minMaxLoc(reshapeAudio)
maxElem = int(max(abs(minCv), abs(maxCv)))
# if all data values are zero (silence)
if maxElem == 0:
maxElem = 1
for i in range(len(reshapeAudio)):
reshapeAudio[i] = middle - reshapeAudio[i] * middle // maxElem
for i in range(1, frameVectorCols, 1):
cv.line(img, (i - 1, int(reshapeAudio[i - 1])), (i, int(reshapeAudio[i])), color, thickness)
img = cv.resize(img, (900, 400), interpolation=cv.INTER_AREA)
return img
def drawAmplitudeScale(self, inputImg, inputAudio, samplingRate, xmin=None, xmax=None):
# function of layout drawing for graph of volume amplitudes
# x axis for time
# y axis for amplitudes
# parameters for the new image size
preCol = 100
aftCol = 100
preLine = 40
aftLine = 50
frameVectorRows = inputImg.shape[0]
frameVectorCols = inputImg.shape[1]
totalRows = preLine + frameVectorRows + aftLine
totalCols = preCol + frameVectorCols + aftCol
imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8)
imgTotal += 255 # white background
imgTotal[preLine: preLine + frameVectorRows, preCol: preCol + frameVectorCols] = inputImg
# calculating values on x axis
if xmin is None:
xmin = 0
if xmax is None:
xmax = len(inputAudio) / samplingRate
if xmax > self.xmarkup:
xList = np.linspace(xmin, xmax, self.xmarkup).astype(int)
else:
# this case is used to display a dynamic update
tmp = np.arange(xmin, xmax, 1).astype(int) + 1
xList = np.concatenate((np.zeros(self.xmarkup - len(tmp)), tmp[:]), axis=None)
# calculating values on y axis
ymin = np.min(inputAudio)
ymax = np.max(inputAudio)
yList = np.linspace(ymin, ymax, self.ymarkup)
# parameters for layout drawing
textThickness = 1
gridThickness = 1
gridColor = (0, 0, 0)
textColor = (0, 0, 0)
font = cv.FONT_HERSHEY_SIMPLEX
fontScale = 0.5
# horizontal axis under the graph
cv.line(imgTotal, (preCol, totalRows - aftLine),
(preCol + frameVectorCols, totalRows - aftLine),
gridColor, gridThickness)
# vertical axis for amplitude
cv.line(imgTotal, (preCol, preLine), (preCol, preLine + frameVectorRows),
gridColor, gridThickness)
# parameters for layout calculation
serifSize = 10
indentDownX = serifSize * 2
indentDownY = serifSize // 2
indentLeftX = serifSize
indentLeftY = 2 * preCol // 3
# drawing layout for x axis
numX = frameVectorCols // (self.xmarkup - 1)
for i in range(len(xList)):
a1 = preCol + i * numX
a2 = frameVectorRows + preLine
b1 = a1
b2 = a2 + serifSize
if self.enableGrid is True:
d1 = a1
d2 = preLine
cv.line(imgTotal, (a1, a2), (d1, d2), gridColor, gridThickness)
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(xList[i])), (b1 - indentLeftX, b2 + indentDownX),
font, fontScale, textColor, textThickness)
# drawing layout for y axis
numY = frameVectorRows // (self.ymarkup - 1)
for i in range(len(yList)):
a1 = preCol
a2 = totalRows - aftLine - i * numY
b1 = preCol - serifSize
b2 = a2
if self.enableGrid is True:
d1 = preCol + frameVectorCols
d2 = a2
cv.line(imgTotal, (a1, a2), (d1, d2), gridColor, gridThickness)
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(yList[i])), (b1 - indentLeftY, b2 + indentDownY),
font, fontScale, textColor, textThickness)
imgTotal = cv.resize(imgTotal, (self.cols, self.rows), interpolation=cv.INTER_AREA)
return imgTotal
def STFT(self, inputAudio):
"""
The Short-time Fourier transform (STFT), is a Fourier-related transform used to determine
the sinusoidal frequency and phase content of local sections of a signal as it changes over
time.
In practice, the procedure for computing STFTs is to divide a longer time signal into
shorter segments of equal length and then compute the Fourier transform separately on each
shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually
plots the changing spectra as a function of time, known as a spectrogram or waterfall plot.
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
"""
time_step = self.windLen - self.overlap
stft = []
if self.windowType == "Hann":
# https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
Hann_wind = []
for i in range (1 - self.windLen, self.windLen, 2):
Hann_wind.append(i * (0.5 + 0.5 * math.cos(math.pi * i / (self.windLen - 1))))
Hann_wind = np.asarray(Hann_wind)
elif self.windowType == "Hamming":
# https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
Hamming_wind = []
for i in range (1 - self.windLen, self.windLen, 2):
Hamming_wind.append(i * (0.53836 - 0.46164 * (math.cos(2 * math.pi * i / (self.windLen - 1)))))
Hamming_wind = np.asarray(Hamming_wind)
for index in np.arange(0, len(inputAudio), time_step).astype(int):
section = inputAudio[index:index + self.windLen]
zeroArray = np.zeros(self.windLen - len(section))
section = np.concatenate((section, zeroArray), axis=None)
if self.windowType == "Hann":
section *= Hann_wind
elif self.windowType == "Hamming":
section *= Hamming_wind
dst = np.empty(0)
dst = cv.dft(section, dst, flags=cv.DFT_COMPLEX_OUTPUT)
reshape_dst = np.reshape(dst, (-1))
# we need only the first part of the spectrum, the second part is symmetrical
complexArr = np.zeros(len(dst) // 4, dtype=complex)
for i in range(len(dst) // 4):
complexArr[i] = complex(reshape_dst[2 * i], reshape_dst[2 * i + 1])
stft.append(np.abs(complexArr))
stft = np.array(stft).transpose()
# convert elements to the decibel scale
np.log10(stft, out=stft, where=(stft != 0.))
return 10 * stft
def drawSpectrogram(self, stft):
frameVectorRows = stft.shape[0]
frameVectorCols = stft.shape[1]
# Normalization of image values from 0 to 255 to get more contrast image
# and this normalization will be taken into account in the scale drawing
colormapImageRows = 255
imgSpec = np.zeros((frameVectorRows, frameVectorCols, 3), np.uint8)
stftMat = np.zeros((frameVectorRows, frameVectorCols), np.float64)
cv.normalize(stft, stftMat, 1.0, 0.0, cv.NORM_INF)
for i in range(frameVectorRows):
for j in range(frameVectorCols):
imgSpec[frameVectorRows - i - 1, j] = int(stftMat[i][j] * colormapImageRows)
imgSpec = cv.applyColorMap(imgSpec, cv.COLORMAP_INFERNO)
imgSpec = cv.resize(imgSpec, (900, 400), interpolation=cv.INTER_LINEAR)
return imgSpec
def drawSpectrogramColorbar(self, inputImg, inputAudio, samplingRate, stft, xmin=None, xmax=None):
# function of layout drawing for the three-dimensional graph of the spectrogram
# x axis for time
# y axis for frequencies
# z axis for magnitudes of frequencies shown by color scale
# parameters for the new image size
preCol = 100
aftCol = 100
preLine = 40
aftLine = 50
colColor = 20
ind_col = 20
frameVectorRows = inputImg.shape[0]
frameVectorCols = inputImg.shape[1]
totalRows = preLine + frameVectorRows + aftLine
totalCols = preCol + frameVectorCols + aftCol + colColor
imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8)
imgTotal += 255 # white background
imgTotal[preLine: preLine + frameVectorRows, preCol: preCol + frameVectorCols] = inputImg
# colorbar image due to drawSpectrogram(..) picture has been normalised from 255 to 0,
# so here colorbar has values from 255 to 0
colorArrSize = 256
imgColorBar = np.zeros((colorArrSize, colColor, 1), np.uint8)
for i in range(colorArrSize):
imgColorBar[i] += colorArrSize - 1 - i
imgColorBar = cv.applyColorMap(imgColorBar, cv.COLORMAP_INFERNO)
imgColorBar = cv.resize(imgColorBar, (colColor, frameVectorRows), interpolation=cv.INTER_AREA) #
imgTotal[preLine: preLine + frameVectorRows,
preCol + frameVectorCols + ind_col:
preCol + frameVectorCols + ind_col + colColor] = imgColorBar
# calculating values on x axis
if xmin is None:
xmin = 0
if xmax is None:
xmax = len(inputAudio) / samplingRate
if xmax > self.xmarkup:
xList = np.linspace(xmin, xmax, self.xmarkup).astype(int)
else:
# this case is used to display a dynamic update
tmpXList = np.arange(xmin, xmax, 1).astype(int) + 1
xList = np.concatenate((np.zeros(self.xmarkup - len(tmpXList)), tmpXList[:]), axis=None)
# calculating values on y axis
# according to the Nyquist sampling theorem,
# signal should posses frequencies equal to half of sampling rate
ymin = 0
ymax = int(samplingRate / 2.)
yList = np.linspace(ymin, ymax, self.ymarkup).astype(int)
# calculating values on z axis
zList = np.linspace(np.min(stft), np.max(stft), self.zmarkup)
# parameters for layout drawing
textThickness = 1
textColor = (0, 0, 0)
gridThickness = 1
gridColor = (0, 0, 0)
font = cv.FONT_HERSHEY_SIMPLEX
fontScale = 0.5
serifSize = 10
indentDownX = serifSize * 2
indentDownY = serifSize // 2
indentLeftX = serifSize
indentLeftY = 2 * preCol // 3
# horizontal axis
cv.line(imgTotal, (preCol, totalRows - aftLine), (preCol + frameVectorCols, totalRows - aftLine),
gridColor, gridThickness)
# vertical axis
cv.line(imgTotal, (preCol, preLine), (preCol, preLine + frameVectorRows),
gridColor, gridThickness)
# drawing layout for x axis
numX = frameVectorCols // (self.xmarkup - 1)
for i in range(len(xList)):
a1 = preCol + i * numX
a2 = frameVectorRows + preLine
b1 = a1
b2 = a2 + serifSize
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(xList[i])), (b1 - indentLeftX, b2 + indentDownX),
font, fontScale, textColor, textThickness)
# drawing layout for y axis
numY = frameVectorRows // (self.ymarkup - 1)
for i in range(len(yList)):
a1 = preCol
a2 = totalRows - aftLine - i * numY
b1 = preCol - serifSize
b2 = a2
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(yList[i])), (b1 - indentLeftY, b2 + indentDownY),
font, fontScale, textColor, textThickness)
# drawing layout for z axis
numZ = frameVectorRows // (self.zmarkup - 1)
for i in range(len(zList)):
a1 = preCol + frameVectorCols + ind_col + colColor
a2 = totalRows - aftLine - i * numZ
b1 = a1 + serifSize
b2 = a2
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
cv.putText(imgTotal, str(int(zList[i])), (b1 + 10, b2 + indentDownY),
font, fontScale, textColor, textThickness)
imgTotal = cv.resize(imgTotal, (self.cols, self.rows), interpolation=cv.INTER_AREA)
return imgTotal
def concatenateImages(self, img1, img2):
# first image will be under the second image
totalRows = img1.shape[0] + img2.shape[0]
totalCols = max(img1.shape[1], img2.shape[1])
# if images columns do not match, the difference is filled in white
imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8)
imgTotal += 255
imgTotal[:img1.shape[0], :img1.shape[1]] = img1
imgTotal[img2.shape[0]:, :img2.shape[1]] = img2
return imgTotal
def dynamicFile(self, file):
cap = cv.VideoCapture(file)
params = [cv.CAP_PROP_AUDIO_STREAM, self.audioStream,
cv.CAP_PROP_VIDEO_STREAM, -1,
cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_16S]
params = np.asarray(params)
cap.open(file, cv.CAP_ANY, params)
if cap.isOpened() == False:
print("ERROR! Can't to open file")
return
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))
step = int(self.updateTime * samplingRate)
frameSize = int(self.frameSizeTime * samplingRate)
# since the dimensional grid is counted in integer seconds,
# if duration of audio frame is less than xmarkup, to avoid an incorrect display,
# xmarkup will be taken equal to duration
if self.frameSizeTime <= self.xmarkup:
self.xmarkup = self.frameSizeTime
buffer = []
section = np.zeros(frameSize, dtype=np.int16)
currentSamples = 0
while (1):
if (cap.grab()):
frame = []
frame = np.asarray(frame)
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
buffer.append(frame[1][0][i])
buffer_size = len(buffer)
if (buffer_size >= step):
section = list(section)
currentSamples += step
del section[0:step]
section.extend(buffer[0:step])
del buffer[0:step]
section = np.asarray(section)
if currentSamples < frameSize:
xmin = 0
xmax = (currentSamples) / samplingRate
else:
xmin = (currentSamples - frameSize) / samplingRate + 1
xmax = (currentSamples) / samplingRate
if self.graph == "ampl":
imgAmplitude = self.drawAmplitude(section)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
cv.imshow("Display amplitude graph", imgAmplitude)
cv.waitKey(self.waitTime)
elif self.graph == "spec":
stft = self.STFT(section)
imgSpec = self.drawSpectrogram(stft)
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
cv.imshow("Display spectrogram", imgSpec)
cv.waitKey(self.waitTime)
elif self.graph == "ampl_and_spec":
imgAmplitude = self.drawAmplitude(section)
stft = self.STFT(section)
imgSpec = self.drawSpectrogram(stft)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
imgTotal = self.concatenateImages(imgAmplitude, imgSpec)
cv.imshow("Display amplitude graph and spectrogram", imgTotal)
cv.waitKey(self.waitTime)
else:
break
def dynamicMicrophone(self):
cap = cv.VideoCapture()
params = [cv.CAP_PROP_AUDIO_STREAM, 0, cv.CAP_PROP_VIDEO_STREAM, -1]
params = np.asarray(params)
cap.open(0, cv.CAP_ANY, params)
if cap.isOpened() == False:
print("ERROR! Can't to open file")
return
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))
frame = []
frame = np.asarray(frame)
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
step = int(self.updateTime * samplingRate)
frameSize = int(self.frameSizeTime * samplingRate)
self.xmarkup = self.frameSizeTime
currentSamples = 0
buffer = []
section = np.zeros(frameSize, dtype=np.int16)
cvTickFreq = cv.getTickFrequency()
sysTimeCurr = cv.getTickCount()
sysTimePrev = sysTimeCurr
self.waitTime = self.updateTime * 1000
while ((sysTimeCurr - sysTimePrev) / cvTickFreq < self.microTime):
if (cap.grab()):
frame = []
frame = np.asarray(frame)
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
buffer.append(frame[1][0][i])
sysTimeCurr = cv.getTickCount()
buffer_size = len(buffer)
if (buffer_size >= step):
section = list(section)
currentSamples += step
del section[0:step]
section.extend(buffer[0:step])
del buffer[0:step]
section = np.asarray(section)
if currentSamples < frameSize:
xmin = 0
xmax = (currentSamples) / samplingRate
else:
xmin = (currentSamples - frameSize) / samplingRate + 1
xmax = (currentSamples) / samplingRate
if self.graph == "ampl":
imgAmplitude = self.drawAmplitude(section)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
cv.imshow("Display amplitude graph", imgAmplitude)
cv.waitKey(self.waitTime)
elif self.graph == "spec":
stft = self.STFT(section)
imgSpec = self.drawSpectrogram(stft)
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
cv.imshow("Display spectrogram", imgSpec)
cv.waitKey(self.waitTime)
elif self.graph == "ampl_and_spec":
imgAmplitude = self.drawAmplitude(section)
stft = self.STFT(section)
imgSpec = self.drawSpectrogram(stft)
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
imgTotal = self.concatenateImages(imgAmplitude, imgSpec)
cv.imshow("Display amplitude graph and spectrogram", imgTotal)
cv.waitKey(self.waitTime)
else:
break
def initAndCheckArgs(self, args):
if args.inputType != "file" and args.inputType != "microphone":
print("Error: ", args.inputType, " input method doesnt exist")
return False
if args.draw != "static" and args.draw != "dynamic":
print("Error: ", args.draw, " draw type doesnt exist")
return False
if args.graph != "ampl" and args.graph != "spec" and args.graph != "ampl_and_spec":
print("Error: ", args.graph, " type of graph doesnt exist")
return False
if args.windowType != "Rect" and args.windowType != "Hann" and args.windowType != "Hamming":
print("Error: ", args.windowType, " type of window doesnt exist")
return False
if args.windLen <= 0:
print("Error: windLen = ", args.windLen, " - incorrect value. Must be > 0")
return False
if args.overlap <= 0:
print("Error: overlap = ", args.overlap, " - incorrect value. Must be > 0")
return False
if args.rows <= 0:
print("Error: rows = ", args.rows, " - incorrect value. Must be > 0")
return False
if args.cols <= 0:
print("Error: cols = ", args.cols, " - incorrect value. Must be > 0")
return False
if args.xmarkup < 2:
print("Error: xmarkup = ", args.xmarkup, " - incorrect value. Must be >= 2")
return False
if args.ymarkup < 2:
print("Error: ymarkup = ", args.ymarkup, " - incorrect value. Must be >= 2")
return False
if args.zmarkup < 2:
print("Error: zmarkup = ", args.zmarkup, " - incorrect value. Must be >= 2")
return False
if args.microTime <= 0:
print("Error: microTime = ", args.microTime, " - incorrect value. Must be > 0")
return False
if args.frameSizeTime <= 0:
print("Error: frameSizeTime = ", args.frameSizeTime, " - incorrect value. Must be > 0")
return False
if args.updateTime <= 0:
print("Error: updateTime = ", args.updateTime, " - incorrect value. Must be > 0")
return False
if args.waitTime < 0:
print("Error: waitTime = ", args.waitTime, " - incorrect value. Must be >= 0")
return False
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,
description='''this sample draws a volume graph and/or spectrogram of audio/video files and microphone\nDefault usage: ./Spectrogram.exe''')
parser.add_argument("-i", "--inputType", dest="inputType", type=str, default="file", help="file or microphone")
parser.add_argument("-d", "--draw", dest="draw", type=str, default="static",
help="type of drawing: static - for plotting graph(s) across the entire input audio; dynamic - for plotting graph(s) in a time-updating window")
parser.add_argument("-g", "--graph", dest="graph", type=str, default="ampl_and_spec",
help="type of graph: amplitude graph or/and spectrogram. Please use tags below : ampl - draw the amplitude graph; spec - draw the spectrogram; ampl_and_spec - draw the amplitude graph and spectrogram on one image under each other")
parser.add_argument("-a", "--audio", dest="audio", type=str, default='Megamind.avi',
help="name and path to file")
parser.add_argument("-s", "--audioStream", dest="audioStream", type=int, default=1,
help=" CAP_PROP_AUDIO_STREAM value")
parser.add_argument("-t", '--windowType', dest="windowType", type=str, default="Rect",
help="type of window for STFT. Please use tags below : Rect/Hann/Hamming")
parser.add_argument("-l", '--windLen', dest="windLen", type=int, default=256, help="size of window for STFT")
parser.add_argument("-o", '--overlap', dest="overlap", type=int, default=128, help="overlap of windows for STFT")
parser.add_argument("-gd", '--grid', dest="enableGrid", type=bool, default=False, help="grid on amplitude graph(on/off)")
parser.add_argument("-r", '--rows', dest="rows", type=int, default=400, help="rows of output image")
parser.add_argument("-c", '--cols', dest="cols", type=int, default=900, help="cols of output image")
parser.add_argument("-x", '--xmarkup', dest="xmarkup", type=int, default=5,
help="number of x axis divisions (time asix)")
parser.add_argument("-y", '--ymarkup', dest="ymarkup", type=int, default=5,
help="number of y axis divisions (frequency or/and amplitude axis)") # ?
parser.add_argument("-z", '--zmarkup', dest="zmarkup", type=int, default=5,
help="number of z axis divisions (colorbar)") # ?
parser.add_argument("-m", '--microTime', dest="microTime", type=int, default=20,
help="time of recording audio with microphone in seconds")
parser.add_argument("-f", '--frameSizeTime', dest="frameSizeTime", type=int, default=5,
help="size of sliding window in seconds")
parser.add_argument("-u", '--updateTime', dest="updateTime", type=int, default=1,
help="update time of sliding window in seconds")
parser.add_argument("-w", '--waitTime', dest="waitTime", type=int, default=10,
help="parameter to cv.waitKey() for dynamic update, takes values in milliseconds")
args = parser.parse_args()
AudioDrawing(args).Draw()
|