File: audio_spectrogram.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (804 lines) | stat: -rw-r--r-- 34,078 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
import numpy as np
import cv2 as cv
import math
import argparse

class AudioDrawing:
    '''
        Used for drawing audio graphics
    '''
    def __init__(self, args):

        self.inputType = args.inputType
        self.draw = args.draw
        self.graph = args.graph
        self.audio = cv.samples.findFile(args.audio)
        self.audioStream = args.audioStream

        self.windowType = args.windowType
        self.windLen = args.windLen
        self.overlap = args.overlap

        self.enableGrid = args.enableGrid

        self.rows = args.rows
        self.cols = args.cols

        self.xmarkup = args.xmarkup
        self.ymarkup = args.ymarkup
        self.zmarkup = args.zmarkup

        self.microTime = args.microTime
        self.frameSizeTime = args.frameSizeTime
        self.updateTime = args.updateTime
        self.waitTime = args.waitTime

        if self.initAndCheckArgs(args) is False:
            exit()


    def Draw(self):
        if self.draw == "static":

            if self.inputType == "file":
                samplingRate, inputAudio = self.readAudioFile(self.audio)

            elif self.inputType == "microphone":
                samplingRate, inputAudio = self.readAudioMicrophone()

            duration = len(inputAudio) // samplingRate

            # since the dimensional grid is counted in integer seconds,
            # if the input audio has an incomplete last second,
            # then it is filled with zeros to complete
            remainder = len(inputAudio) % samplingRate
            if remainder != 0:
                sizeToFullSec = samplingRate - remainder
                zeroArr = np.zeros(sizeToFullSec)
                inputAudio = np.concatenate((inputAudio, zeroArr), axis=0)
                duration += 1
                print("Update duration of audio to full second with ",
                    sizeToFullSec, " zero samples")
                print("New number of samples ", len(inputAudio))

            if duration <= self.xmarkup:
                self.xmarkup = duration + 1

            if self.graph == "ampl":
                imgAmplitude = self.drawAmplitude(inputAudio)
                imgAmplitude = self.drawAmplitudeScale(imgAmplitude, inputAudio, samplingRate)
                cv.imshow("Display window", imgAmplitude)
                cv.waitKey(0)

            elif self.graph == "spec":
                stft = self.STFT(inputAudio)
                imgSpec = self.drawSpectrogram(stft)
                imgSpec = self.drawSpectrogramColorbar(imgSpec, inputAudio, samplingRate, stft)
                cv.imshow("Display window", imgSpec)
                cv.waitKey(0)

            elif self.graph == "ampl_and_spec":
                imgAmplitude = self.drawAmplitude(inputAudio)
                imgAmplitude = self.drawAmplitudeScale(imgAmplitude, inputAudio, samplingRate)

                stft = self.STFT(inputAudio)
                imgSpec = self.drawSpectrogram(stft)
                imgSpec = self.drawSpectrogramColorbar(imgSpec, inputAudio, samplingRate, stft)

                imgTotal = self.concatenateImages(imgAmplitude, imgSpec)
                cv.imshow("Display window", imgTotal)
                cv.waitKey(0)

        elif self.draw == "dynamic":

            if self.inputType == "file":
                self.dynamicFile(self.audio)

            elif self.inputType == "microphone":
                self.dynamicMicrophone()


    def readAudioFile(self, file):
        cap = cv.VideoCapture(file)

        params = [cv.CAP_PROP_AUDIO_STREAM, self.audioStream,
                cv.CAP_PROP_VIDEO_STREAM, -1,
                cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_16S]
        params = np.asarray(params)

        cap.open(file, cv.CAP_ANY, params)
        if cap.isOpened() == False:
            print("Error : Can't read audio file: '", self.audio, "' with audioStream = ", self.audioStream)
            print("Error: problems with audio reading, check input arguments")
            exit()
        audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
        numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))

        print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
        print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
        print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
        print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))

        frame = []
        frame = np.asarray(frame)
        inputAudio = []

        while (1):
            if (cap.grab()):
                frame = []
                frame = np.asarray(frame)
                frame = cap.retrieve(frame, audioBaseIndex)
                for i in range(len(frame[1][0])):
                    inputAudio.append(frame[1][0][i])
            else:
                break

        inputAudio = np.asarray(inputAudio)
        print("Number of samples: ", len(inputAudio))
        samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
        return samplingRate, inputAudio


    def readAudioMicrophone(self):
        cap = cv.VideoCapture()

        params = [cv.CAP_PROP_AUDIO_STREAM, 0, cv.CAP_PROP_VIDEO_STREAM, -1]
        params = np.asarray(params)

        cap.open(0, cv.CAP_ANY, params)
        if cap.isOpened() == False:
            print("Error: Can't open microphone")
            print("Error: problems with audio reading, check input arguments")
            exit()
        audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
        numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))

        print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
        print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
        print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
        print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))

        cvTickFreq = cv.getTickFrequency()
        sysTimeCurr = cv.getTickCount()
        sysTimePrev = sysTimeCurr

        frame = []
        frame = np.asarray(frame)
        inputAudio = []

        while ((sysTimeCurr - sysTimePrev) / cvTickFreq < self.microTime):
            if (cap.grab()):
                frame = []
                frame = np.asarray(frame)
                frame = cap.retrieve(frame, audioBaseIndex)
                for i in range(len(frame[1][0])):
                    inputAudio.append(frame[1][0][i])
                sysTimeCurr = cv.getTickCount()
            else:
                print("Error: Grab error")
                break

        inputAudio = np.asarray(inputAudio)
        print("Number of samples: ", len(inputAudio))
        samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))

        return samplingRate, inputAudio


    def drawAmplitude(self, inputAudio):
        color = (247, 111, 87)
        thickness = 5
        frameVectorRows = 500
        middle = frameVectorRows // 2

        # usually the input data is too big, so it is necessary
        # to reduce size using interpolation of data
        frameVectorCols = 40000
        if len(inputAudio) < frameVectorCols:
            frameVectorCols = len(inputAudio)

        img = np.zeros((frameVectorRows, frameVectorCols, 3), np.uint8)
        img += 255  # white background

        audio = np.array(0)
        audio = cv.resize(inputAudio, (1, frameVectorCols), interpolation=cv.INTER_LINEAR)
        reshapeAudio = np.reshape(audio, (-1))

        # normalization data by maximum element
        minCv, maxCv, _, _ = cv.minMaxLoc(reshapeAudio)
        maxElem = int(max(abs(minCv), abs(maxCv)))

        # if all data values are zero (silence)
        if maxElem == 0:
            maxElem = 1
        for i in range(len(reshapeAudio)):
            reshapeAudio[i] = middle - reshapeAudio[i] * middle // maxElem

        for i in range(1, frameVectorCols, 1):
            cv.line(img, (i - 1, int(reshapeAudio[i - 1])), (i, int(reshapeAudio[i])), color, thickness)

        img = cv.resize(img, (900, 400), interpolation=cv.INTER_AREA)
        return img


    def drawAmplitudeScale(self, inputImg, inputAudio, samplingRate, xmin=None, xmax=None):
        # function of layout drawing for graph of volume amplitudes
        # x axis for time
        # y axis for amplitudes

        # parameters for the new image size
        preCol = 100
        aftCol = 100
        preLine = 40
        aftLine = 50

        frameVectorRows = inputImg.shape[0]
        frameVectorCols = inputImg.shape[1]

        totalRows = preLine + frameVectorRows + aftLine
        totalCols = preCol + frameVectorCols + aftCol

        imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8)
        imgTotal += 255  # white background
        imgTotal[preLine: preLine + frameVectorRows, preCol: preCol + frameVectorCols] = inputImg

        # calculating values on x axis
        if xmin is None:
            xmin = 0
        if xmax is None:
            xmax = len(inputAudio) / samplingRate

        if xmax > self.xmarkup:
            xList = np.linspace(xmin, xmax, self.xmarkup).astype(int)
        else:
            # this case is used to display a dynamic update
            tmp = np.arange(xmin, xmax, 1).astype(int) + 1
            xList = np.concatenate((np.zeros(self.xmarkup - len(tmp)), tmp[:]), axis=None)

        # calculating values on y axis
        ymin = np.min(inputAudio)
        ymax = np.max(inputAudio)
        yList = np.linspace(ymin, ymax, self.ymarkup)

        # parameters for layout drawing
        textThickness = 1
        gridThickness = 1
        gridColor = (0, 0, 0)
        textColor = (0, 0, 0)
        font = cv.FONT_HERSHEY_SIMPLEX
        fontScale = 0.5

        # horizontal axis under the graph
        cv.line(imgTotal, (preCol, totalRows - aftLine),
                (preCol + frameVectorCols, totalRows - aftLine),
                gridColor, gridThickness)
        # vertical axis for amplitude
        cv.line(imgTotal, (preCol, preLine), (preCol, preLine + frameVectorRows),
                gridColor, gridThickness)

        # parameters for layout calculation
        serifSize = 10
        indentDownX = serifSize * 2
        indentDownY = serifSize // 2
        indentLeftX = serifSize
        indentLeftY = 2 * preCol // 3

        # drawing layout for x axis
        numX = frameVectorCols // (self.xmarkup - 1)
        for i in range(len(xList)):
            a1 = preCol + i * numX
            a2 = frameVectorRows + preLine
            b1 = a1
            b2 = a2 + serifSize
            if self.enableGrid is True:
                d1 = a1
                d2 = preLine
                cv.line(imgTotal, (a1, a2), (d1, d2), gridColor, gridThickness)
            cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
            cv.putText(imgTotal, str(int(xList[i])), (b1 - indentLeftX, b2 + indentDownX),
                    font, fontScale, textColor, textThickness)

        # drawing layout for y axis
        numY = frameVectorRows // (self.ymarkup - 1)
        for i in range(len(yList)):
            a1 = preCol
            a2 = totalRows - aftLine - i * numY
            b1 = preCol - serifSize
            b2 = a2
            if self.enableGrid is True:
                d1 = preCol + frameVectorCols
                d2 = a2
                cv.line(imgTotal, (a1, a2), (d1, d2), gridColor, gridThickness)
            cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
            cv.putText(imgTotal, str(int(yList[i])), (b1 - indentLeftY, b2 + indentDownY),
                    font, fontScale, textColor, textThickness)
        imgTotal = cv.resize(imgTotal, (self.cols, self.rows), interpolation=cv.INTER_AREA)
        return imgTotal


    def STFT(self, inputAudio):
        """
        The Short-time Fourier transform (STFT), is a Fourier-related transform used to determine
        the sinusoidal frequency and phase content of local sections of a signal as it changes over
        time.
        In practice, the procedure for computing STFTs is to divide a longer time signal into
        shorter segments of equal length and then compute the Fourier transform separately on each
        shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually
        plots the changing spectra as a function of time, known as a spectrogram or waterfall plot.

        https://en.wikipedia.org/wiki/Short-time_Fourier_transform
        """

        time_step = self.windLen - self.overlap
        stft = []

        if self.windowType == "Hann":
            # https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
            Hann_wind = []
            for i in range (1 - self.windLen, self.windLen, 2):
                Hann_wind.append(i * (0.5 + 0.5 * math.cos(math.pi * i / (self.windLen - 1))))
            Hann_wind = np.asarray(Hann_wind)

        elif self.windowType == "Hamming":
            # https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows
            Hamming_wind = []
            for i in range (1 - self.windLen, self.windLen, 2):
                Hamming_wind.append(i * (0.53836 - 0.46164 * (math.cos(2 * math.pi * i / (self.windLen - 1)))))
            Hamming_wind = np.asarray(Hamming_wind)

        for index in np.arange(0, len(inputAudio), time_step).astype(int):

            section = inputAudio[index:index + self.windLen]
            zeroArray = np.zeros(self.windLen - len(section))
            section = np.concatenate((section, zeroArray), axis=None)

            if self.windowType == "Hann":
                section *= Hann_wind
            elif self.windowType == "Hamming":
                section *= Hamming_wind

            dst = np.empty(0)
            dst = cv.dft(section, dst, flags=cv.DFT_COMPLEX_OUTPUT)
            reshape_dst = np.reshape(dst, (-1))
            # we need only the first part of the spectrum, the second part is symmetrical
            complexArr = np.zeros(len(dst) // 4, dtype=complex)
            for i in range(len(dst) // 4):
                complexArr[i] = complex(reshape_dst[2 * i], reshape_dst[2 * i + 1])
            stft.append(np.abs(complexArr))

        stft = np.array(stft).transpose()
        # convert elements to the decibel scale
        np.log10(stft, out=stft, where=(stft != 0.))
        return 10 * stft


    def drawSpectrogram(self, stft):

        frameVectorRows = stft.shape[0]
        frameVectorCols = stft.shape[1]

        # Normalization of image values from 0 to 255 to get more contrast image
        # and this normalization will be taken into account in the scale drawing
        colormapImageRows = 255

        imgSpec = np.zeros((frameVectorRows, frameVectorCols, 3), np.uint8)
        stftMat = np.zeros((frameVectorRows, frameVectorCols), np.float64)
        cv.normalize(stft, stftMat, 1.0, 0.0, cv.NORM_INF)

        for i in range(frameVectorRows):
            for j in range(frameVectorCols):
                imgSpec[frameVectorRows - i - 1, j] = int(stftMat[i][j] * colormapImageRows)

        imgSpec = cv.applyColorMap(imgSpec, cv.COLORMAP_INFERNO)
        imgSpec = cv.resize(imgSpec, (900, 400), interpolation=cv.INTER_LINEAR)
        return imgSpec


    def drawSpectrogramColorbar(self, inputImg, inputAudio, samplingRate, stft, xmin=None, xmax=None):
        # function of layout drawing for the three-dimensional graph of the spectrogram
        # x axis for time
        # y axis for frequencies
        # z axis for magnitudes of frequencies shown by color scale

        # parameters for the new image size
        preCol = 100
        aftCol = 100
        preLine = 40
        aftLine = 50
        colColor = 20
        ind_col = 20

        frameVectorRows = inputImg.shape[0]
        frameVectorCols = inputImg.shape[1]

        totalRows = preLine + frameVectorRows + aftLine
        totalCols = preCol + frameVectorCols + aftCol + colColor

        imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8)
        imgTotal += 255  # white background
        imgTotal[preLine: preLine + frameVectorRows, preCol: preCol + frameVectorCols] = inputImg

        # colorbar image due to drawSpectrogram(..) picture has been normalised from 255 to 0,
        # so here colorbar has values from 255 to 0
        colorArrSize = 256
        imgColorBar = np.zeros((colorArrSize, colColor, 1), np.uint8)

        for i in range(colorArrSize):
            imgColorBar[i] += colorArrSize - 1 - i

        imgColorBar = cv.applyColorMap(imgColorBar, cv.COLORMAP_INFERNO)
        imgColorBar = cv.resize(imgColorBar, (colColor, frameVectorRows), interpolation=cv.INTER_AREA)  #

        imgTotal[preLine: preLine + frameVectorRows,
        preCol + frameVectorCols + ind_col:
        preCol + frameVectorCols + ind_col + colColor] = imgColorBar

        # calculating values on x axis
        if xmin is None:
            xmin = 0
        if xmax is None:
            xmax = len(inputAudio) / samplingRate
        if xmax > self.xmarkup:
            xList = np.linspace(xmin, xmax, self.xmarkup).astype(int)
        else:
            # this case is used to display a dynamic update
            tmpXList = np.arange(xmin, xmax, 1).astype(int) + 1
            xList = np.concatenate((np.zeros(self.xmarkup - len(tmpXList)), tmpXList[:]), axis=None)

        # calculating values on y axis
        # according to the Nyquist sampling theorem,
        # signal should posses frequencies equal to half of sampling rate
        ymin = 0
        ymax = int(samplingRate / 2.)
        yList = np.linspace(ymin, ymax, self.ymarkup).astype(int)

        # calculating values on z axis
        zList = np.linspace(np.min(stft), np.max(stft), self.zmarkup)

        # parameters for layout drawing
        textThickness = 1
        textColor = (0, 0, 0)
        gridThickness = 1
        gridColor = (0, 0, 0)
        font = cv.FONT_HERSHEY_SIMPLEX
        fontScale = 0.5

        serifSize = 10
        indentDownX = serifSize * 2
        indentDownY = serifSize // 2
        indentLeftX = serifSize
        indentLeftY = 2 * preCol // 3

        # horizontal axis
        cv.line(imgTotal, (preCol, totalRows - aftLine), (preCol + frameVectorCols, totalRows - aftLine),
                gridColor, gridThickness)
        # vertical axis
        cv.line(imgTotal, (preCol, preLine), (preCol, preLine + frameVectorRows),
                gridColor, gridThickness)

        # drawing layout for x axis
        numX = frameVectorCols // (self.xmarkup - 1)
        for i in range(len(xList)):
            a1 = preCol + i * numX
            a2 = frameVectorRows + preLine
            b1 = a1
            b2 = a2 + serifSize
            cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
            cv.putText(imgTotal, str(int(xList[i])), (b1 - indentLeftX, b2 + indentDownX),
                    font, fontScale, textColor, textThickness)

        # drawing layout for y axis
        numY = frameVectorRows // (self.ymarkup - 1)
        for i in range(len(yList)):
            a1 = preCol
            a2 = totalRows - aftLine - i * numY
            b1 = preCol - serifSize
            b2 = a2
            cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
            cv.putText(imgTotal, str(int(yList[i])), (b1 - indentLeftY, b2 + indentDownY),
                    font, fontScale, textColor, textThickness)

        # drawing layout for z axis
        numZ = frameVectorRows // (self.zmarkup - 1)
        for i in range(len(zList)):
            a1 = preCol + frameVectorCols + ind_col + colColor
            a2 = totalRows - aftLine - i * numZ
            b1 = a1 + serifSize
            b2 = a2
            cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness)
            cv.putText(imgTotal, str(int(zList[i])), (b1 + 10, b2 + indentDownY),
                    font, fontScale, textColor, textThickness)
        imgTotal = cv.resize(imgTotal, (self.cols, self.rows), interpolation=cv.INTER_AREA)
        return imgTotal


    def concatenateImages(self, img1, img2):
        # first image will be under the second image
        totalRows = img1.shape[0] + img2.shape[0]
        totalCols = max(img1.shape[1], img2.shape[1])

        # if images columns do not match, the difference is filled in white
        imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8)
        imgTotal += 255

        imgTotal[:img1.shape[0], :img1.shape[1]] = img1
        imgTotal[img2.shape[0]:, :img2.shape[1]] = img2

        return imgTotal


    def dynamicFile(self, file):
        cap = cv.VideoCapture(file)
        params = [cv.CAP_PROP_AUDIO_STREAM, self.audioStream,
                cv.CAP_PROP_VIDEO_STREAM, -1,
                cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_16S]
        params = np.asarray(params)

        cap.open(file, cv.CAP_ANY, params)
        if cap.isOpened() == False:
            print("ERROR! Can't to open file")
            return

        audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
        numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))
        samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))

        print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
        print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
        print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
        print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))

        step = int(self.updateTime * samplingRate)
        frameSize = int(self.frameSizeTime * samplingRate)
        # since the dimensional grid is counted in integer seconds,
        # if duration of audio frame is less than xmarkup, to avoid an incorrect display,
        # xmarkup will be taken equal to duration
        if self.frameSizeTime <= self.xmarkup:
            self.xmarkup = self.frameSizeTime

        buffer = []
        section = np.zeros(frameSize, dtype=np.int16)
        currentSamples = 0

        while (1):
            if (cap.grab()):
                frame = []
                frame = np.asarray(frame)
                frame = cap.retrieve(frame, audioBaseIndex)

                for i in range(len(frame[1][0])):
                    buffer.append(frame[1][0][i])

                buffer_size = len(buffer)
                if (buffer_size >= step):

                    section = list(section)
                    currentSamples += step

                    del section[0:step]
                    section.extend(buffer[0:step])
                    del buffer[0:step]

                    section = np.asarray(section)

                    if currentSamples < frameSize:
                        xmin = 0
                        xmax = (currentSamples) / samplingRate
                    else:
                        xmin = (currentSamples - frameSize) / samplingRate + 1
                        xmax = (currentSamples) / samplingRate

                    if self.graph == "ampl":
                        imgAmplitude = self.drawAmplitude(section)
                        imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
                        cv.imshow("Display amplitude graph", imgAmplitude)
                        cv.waitKey(self.waitTime)

                    elif self.graph == "spec":
                        stft = self.STFT(section)
                        imgSpec = self.drawSpectrogram(stft)
                        imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
                        cv.imshow("Display spectrogram", imgSpec)
                        cv.waitKey(self.waitTime)

                    elif self.graph == "ampl_and_spec":

                        imgAmplitude = self.drawAmplitude(section)
                        stft = self.STFT(section)
                        imgSpec = self.drawSpectrogram(stft)

                        imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
                        imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)

                        imgTotal = self.concatenateImages(imgAmplitude, imgSpec)
                        cv.imshow("Display amplitude graph and spectrogram", imgTotal)
                        cv.waitKey(self.waitTime)
            else:
                break


    def dynamicMicrophone(self):
        cap = cv.VideoCapture()
        params = [cv.CAP_PROP_AUDIO_STREAM, 0, cv.CAP_PROP_VIDEO_STREAM, -1]
        params = np.asarray(params)

        cap.open(0, cv.CAP_ANY, params)
        if cap.isOpened() == False:
            print("ERROR! Can't to open file")
            return
        audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
        numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS))

        print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH)))))
        print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))
        print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels)
        print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS))

        frame = []
        frame = np.asarray(frame)
        samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND))

        step = int(self.updateTime * samplingRate)
        frameSize = int(self.frameSizeTime * samplingRate)
        self.xmarkup = self.frameSizeTime

        currentSamples = 0

        buffer = []
        section = np.zeros(frameSize, dtype=np.int16)

        cvTickFreq = cv.getTickFrequency()
        sysTimeCurr = cv.getTickCount()
        sysTimePrev = sysTimeCurr
        self.waitTime = self.updateTime * 1000
        while ((sysTimeCurr - sysTimePrev) / cvTickFreq < self.microTime):
            if (cap.grab()):
                frame = []
                frame = np.asarray(frame)
                frame = cap.retrieve(frame, audioBaseIndex)

                for i in range(len(frame[1][0])):
                    buffer.append(frame[1][0][i])

                sysTimeCurr = cv.getTickCount()
                buffer_size = len(buffer)
                if (buffer_size >= step):

                    section = list(section)
                    currentSamples += step

                    del section[0:step]
                    section.extend(buffer[0:step])
                    del buffer[0:step]

                    section = np.asarray(section)

                    if currentSamples < frameSize:
                        xmin = 0
                        xmax = (currentSamples) / samplingRate
                    else:
                        xmin = (currentSamples - frameSize) / samplingRate + 1
                        xmax = (currentSamples) / samplingRate

                    if self.graph == "ampl":
                        imgAmplitude = self.drawAmplitude(section)
                        imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
                        cv.imshow("Display amplitude graph", imgAmplitude)
                        cv.waitKey(self.waitTime)

                    elif self.graph == "spec":
                        stft = self.STFT(section)
                        imgSpec = self.drawSpectrogram(stft)
                        imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)
                        cv.imshow("Display spectrogram", imgSpec)
                        cv.waitKey(self.waitTime)

                    elif self.graph == "ampl_and_spec":
                        imgAmplitude = self.drawAmplitude(section)
                        stft = self.STFT(section)
                        imgSpec = self.drawSpectrogram(stft)

                        imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax)
                        imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax)

                        imgTotal = self.concatenateImages(imgAmplitude, imgSpec)
                        cv.imshow("Display amplitude graph and spectrogram", imgTotal)
                        cv.waitKey(self.waitTime)
            else:
                break


    def initAndCheckArgs(self, args):
        if args.inputType != "file" and args.inputType != "microphone":
            print("Error: ", args.inputType, " input method doesnt exist")
            return False
        if args.draw != "static" and args.draw != "dynamic":
            print("Error: ", args.draw, " draw type doesnt exist")
            return False
        if args.graph != "ampl" and args.graph != "spec" and args.graph != "ampl_and_spec":
            print("Error: ", args.graph, " type of graph doesnt exist")
            return False
        if args.windowType != "Rect" and args.windowType != "Hann" and args.windowType != "Hamming":
            print("Error: ", args.windowType, " type of window doesnt exist")
            return False
        if args.windLen <= 0:
            print("Error: windLen = ", args.windLen, " - incorrect value. Must be > 0")
            return False
        if args.overlap <= 0:
            print("Error: overlap = ", args.overlap, " - incorrect value. Must be > 0")
            return False
        if args.rows <= 0:
            print("Error: rows = ", args.rows, " - incorrect value. Must be > 0")
            return False
        if args.cols <= 0:
            print("Error: cols = ", args.cols, " - incorrect value. Must be > 0")
            return False
        if args.xmarkup < 2:
            print("Error: xmarkup = ", args.xmarkup, " - incorrect value. Must be >= 2")
            return False
        if args.ymarkup < 2:
            print("Error: ymarkup = ", args.ymarkup, " - incorrect value. Must be >= 2")
            return False
        if args.zmarkup < 2:
            print("Error: zmarkup = ", args.zmarkup, " - incorrect value. Must be >= 2")
            return False
        if args.microTime <= 0:
            print("Error: microTime = ", args.microTime, " - incorrect value. Must be > 0")
            return False
        if args.frameSizeTime <= 0:
            print("Error: frameSizeTime = ", args.frameSizeTime, " - incorrect value. Must be > 0")
            return False
        if args.updateTime <= 0:
            print("Error: updateTime = ", args.updateTime, " - incorrect value. Must be > 0")
            return False
        if args.waitTime < 0:
            print("Error: waitTime = ", args.waitTime, " - incorrect value. Must be >= 0")
            return False
        return True


if __name__ == "__main__":

    parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,
                                     description='''this sample draws a volume graph and/or spectrogram of audio/video files and microphone\nDefault usage: ./Spectrogram.exe''')

    parser.add_argument("-i", "--inputType", dest="inputType", type=str, default="file", help="file or microphone")
    parser.add_argument("-d", "--draw", dest="draw", type=str, default="static",
                        help="type of drawing: static - for plotting graph(s) across the entire input audio; dynamic - for plotting graph(s) in a time-updating window")
    parser.add_argument("-g", "--graph", dest="graph", type=str, default="ampl_and_spec",
                        help="type of graph: amplitude graph or/and spectrogram. Please use tags below : ampl - draw the amplitude graph; spec - draw the spectrogram; ampl_and_spec - draw the amplitude graph and spectrogram on one image under each other")

    parser.add_argument("-a", "--audio", dest="audio", type=str, default='Megamind.avi',
                        help="name and path to file")
    parser.add_argument("-s", "--audioStream", dest="audioStream", type=int, default=1,
                        help=" CAP_PROP_AUDIO_STREAM value")

    parser.add_argument("-t", '--windowType', dest="windowType", type=str, default="Rect",
                        help="type of window for STFT. Please use tags below : Rect/Hann/Hamming")
    parser.add_argument("-l", '--windLen', dest="windLen", type=int, default=256, help="size of window for STFT")
    parser.add_argument("-o", '--overlap', dest="overlap", type=int, default=128, help="overlap of windows for STFT")

    parser.add_argument("-gd", '--grid', dest="enableGrid", type=bool, default=False, help="grid on amplitude graph(on/off)")

    parser.add_argument("-r", '--rows', dest="rows", type=int, default=400, help="rows of output image")
    parser.add_argument("-c", '--cols', dest="cols", type=int, default=900, help="cols of output image")

    parser.add_argument("-x", '--xmarkup', dest="xmarkup", type=int, default=5,
                        help="number of x axis divisions (time asix)")
    parser.add_argument("-y", '--ymarkup', dest="ymarkup", type=int, default=5,
                        help="number of y axis divisions (frequency or/and amplitude axis)")  # ?
    parser.add_argument("-z", '--zmarkup', dest="zmarkup", type=int, default=5,
                        help="number of z axis divisions (colorbar)")  # ?

    parser.add_argument("-m", '--microTime', dest="microTime", type=int, default=20,
                        help="time of recording audio with microphone in seconds")
    parser.add_argument("-f", '--frameSizeTime', dest="frameSizeTime", type=int, default=5,
                        help="size of sliding window in seconds")
    parser.add_argument("-u", '--updateTime', dest="updateTime", type=int, default=1,
                        help="update time of sliding window in seconds")
    parser.add_argument("-w", '--waitTime', dest="waitTime", type=int, default=10,
                        help="parameter to cv.waitKey() for dynamic update, takes values in milliseconds")

    args = parser.parse_args()

    AudioDrawing(args).Draw()