1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#!/usr/bin/env python
'''
camera calibration for distorted images with chess board samples
reads distorted images, calculates the calibration and write undistorted images
usage:
calibrate.py [--debug <output path>] [-w <width>] [-h <height>] [-t <pattern type>] [--square_size=<square size>]
[--marker_size=<aruco marker size>] [--aruco_dict=<aruco dictionary name>] [<image mask>]
usage example:
calibrate.py -w 4 -h 6 -t chessboard --square_size=50 ../data/left*.jpg
default values:
--debug: ./output/
-w: 4
-h: 6
-t: chessboard
--square_size: 10
--marker_size: 5
--aruco_dict: DICT_4X4_50
--threads: 4
<image mask> defaults to ../data/left*.jpg
NOTE: Chessboard size is defined in inner corners. Charuco board size is defined in units.
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
# local modules
from common import splitfn
# built-in modules
import os
def main():
import sys
import getopt
from glob import glob
args, img_names = getopt.getopt(sys.argv[1:], 'w:h:t:', ['debug=','square_size=', 'marker_size=',
'aruco_dict=', 'threads=', ])
args = dict(args)
args.setdefault('--debug', './output/')
args.setdefault('-w', 4)
args.setdefault('-h', 6)
args.setdefault('-t', 'chessboard')
args.setdefault('--square_size', 10)
args.setdefault('--marker_size', 5)
args.setdefault('--aruco_dict', 'DICT_4X4_50')
args.setdefault('--threads', 4)
if not img_names:
img_mask = '../data/left??.jpg' # default
img_names = glob(img_mask)
debug_dir = args.get('--debug')
if debug_dir and not os.path.isdir(debug_dir):
os.mkdir(debug_dir)
height = int(args.get('-h'))
width = int(args.get('-w'))
pattern_type = str(args.get('-t'))
square_size = float(args.get('--square_size'))
marker_size = float(args.get('--marker_size'))
aruco_dict_name = str(args.get('--aruco_dict'))
pattern_size = (width, height)
if pattern_type == 'chessboard':
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
pattern_points *= square_size
obj_points = []
img_points = []
h, w = cv.imread(img_names[0], cv.IMREAD_GRAYSCALE).shape[:2] # TODO: use imquery call to retrieve results
aruco_dicts = {
'DICT_4X4_50': cv.aruco.DICT_4X4_50,
'DICT_4X4_100': cv.aruco.DICT_4X4_100,
'DICT_4X4_250': cv.aruco.DICT_4X4_250,
'DICT_4X4_1000': cv.aruco.DICT_4X4_1000,
'DICT_5X5_50': cv.aruco.DICT_5X5_50,
'DICT_5X5_100': cv.aruco.DICT_5X5_100,
'DICT_5X5_250': cv.aruco.DICT_5X5_250,
'DICT_5X5_1000': cv.aruco.DICT_5X5_1000,
'DICT_6X6_50': cv.aruco.DICT_6X6_50,
'DICT_6X6_100': cv.aruco.DICT_6X6_100,
'DICT_6X6_250': cv.aruco.DICT_6X6_250,
'DICT_6X6_1000': cv.aruco.DICT_6X6_1000,
'DICT_7X7_50': cv.aruco.DICT_7X7_50,
'DICT_7X7_100': cv.aruco.DICT_7X7_100,
'DICT_7X7_250': cv.aruco.DICT_7X7_250,
'DICT_7X7_1000': cv.aruco.DICT_7X7_1000,
'DICT_ARUCO_ORIGINAL': cv.aruco.DICT_ARUCO_ORIGINAL,
'DICT_APRILTAG_16h5': cv.aruco.DICT_APRILTAG_16h5,
'DICT_APRILTAG_25h9': cv.aruco.DICT_APRILTAG_25h9,
'DICT_APRILTAG_36h10': cv.aruco.DICT_APRILTAG_36h10,
'DICT_APRILTAG_36h11': cv.aruco.DICT_APRILTAG_36h11
}
if (aruco_dict_name not in set(aruco_dicts.keys())):
print("unknown aruco dictionary name")
return None
aruco_dict = cv.aruco.getPredefinedDictionary(aruco_dicts[aruco_dict_name])
board = cv.aruco.CharucoBoard(pattern_size, square_size, marker_size, aruco_dict)
charuco_detector = cv.aruco.CharucoDetector(board)
def processImage(fn):
print('processing %s... ' % fn)
img = cv.imread(fn, cv.IMREAD_GRAYSCALE)
if img is None:
print("Failed to load", fn)
return None
assert w == img.shape[1] and h == img.shape[0], ("size: %d x %d ... " % (img.shape[1], img.shape[0]))
found = False
corners = 0
if pattern_type == 'chessboard':
found, corners = cv.findChessboardCorners(img, pattern_size)
if found:
term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
frame_img_points = corners.reshape(-1, 2)
frame_obj_points = pattern_points
elif pattern_type == 'charucoboard':
corners, charucoIds, _, _ = charuco_detector.detectBoard(img)
if (len(corners) > 0):
frame_obj_points, frame_img_points = board.matchImagePoints(corners, charucoIds)
found = True
else:
found = False
else:
print("unknown pattern type", pattern_type)
return None
if debug_dir:
vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
if pattern_type == 'chessboard':
cv.drawChessboardCorners(vis, pattern_size, corners, found)
elif pattern_type == 'charucoboard':
cv.aruco.drawDetectedCornersCharuco(vis, corners, charucoIds=charucoIds)
_path, name, _ext = splitfn(fn)
outfile = os.path.join(debug_dir, name + '_board.png')
cv.imwrite(outfile, vis)
if not found:
print('pattern not found')
return None
print(' %s... OK' % fn)
return (frame_img_points, frame_obj_points)
threads_num = int(args.get('--threads'))
if threads_num <= 1:
chessboards = [processImage(fn) for fn in img_names]
else:
print("Run with %d threads..." % threads_num)
from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(threads_num)
chessboards = pool.map(processImage, img_names)
chessboards = [x for x in chessboards if x is not None]
for (corners, pattern_points) in chessboards:
img_points.append(corners)
obj_points.append(pattern_points)
# calculate camera distortion
rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None)
print("\nRMS:", rms)
print("camera matrix:\n", camera_matrix)
print("distortion coefficients: ", dist_coefs.ravel())
# undistort the image with the calibration
print('')
for fn in img_names if debug_dir else []:
_path, name, _ext = splitfn(fn)
img_found = os.path.join(debug_dir, name + '_board.png')
outfile = os.path.join(debug_dir, name + '_undistorted.png')
img = cv.imread(img_found)
if img is None:
continue
h, w = img.shape[:2]
newcameramtx, roi = cv.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h))
dst = cv.undistort(img, camera_matrix, dist_coefs, None, newcameramtx)
# crop and save the image
x, y, w, h = roi
dst = dst[y:y+h, x:x+w]
print('Undistorted image written to: %s' % outfile)
cv.imwrite(outfile, dst)
print('Done')
if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()
|