File: calibrate.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (208 lines) | stat: -rwxr-xr-x 7,414 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python

'''
camera calibration for distorted images with chess board samples
reads distorted images, calculates the calibration and write undistorted images

usage:
    calibrate.py [--debug <output path>] [-w <width>] [-h <height>] [-t <pattern type>] [--square_size=<square size>]
    [--marker_size=<aruco marker size>] [--aruco_dict=<aruco dictionary name>] [<image mask>]

usage example:
    calibrate.py -w 4 -h 6 -t chessboard --square_size=50 ../data/left*.jpg

default values:
    --debug:    ./output/
    -w: 4
    -h: 6
    -t: chessboard
    --square_size: 10
    --marker_size: 5
    --aruco_dict: DICT_4X4_50
    --threads: 4
    <image mask> defaults to ../data/left*.jpg

NOTE: Chessboard size is defined in inner corners. Charuco board size is defined in units.
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

# local modules
from common import splitfn

# built-in modules
import os

def main():
    import sys
    import getopt
    from glob import glob

    args, img_names = getopt.getopt(sys.argv[1:], 'w:h:t:', ['debug=','square_size=', 'marker_size=',
                                                      'aruco_dict=', 'threads=', ])
    args = dict(args)
    args.setdefault('--debug', './output/')
    args.setdefault('-w', 4)
    args.setdefault('-h', 6)
    args.setdefault('-t', 'chessboard')
    args.setdefault('--square_size', 10)
    args.setdefault('--marker_size', 5)
    args.setdefault('--aruco_dict', 'DICT_4X4_50')
    args.setdefault('--threads', 4)

    if not img_names:
        img_mask = '../data/left??.jpg'  # default
        img_names = glob(img_mask)

    debug_dir = args.get('--debug')
    if debug_dir and not os.path.isdir(debug_dir):
        os.mkdir(debug_dir)

    height = int(args.get('-h'))
    width = int(args.get('-w'))
    pattern_type = str(args.get('-t'))
    square_size = float(args.get('--square_size'))
    marker_size = float(args.get('--marker_size'))
    aruco_dict_name = str(args.get('--aruco_dict'))

    pattern_size = (width, height)
    if pattern_type == 'chessboard':
        pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
        pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
        pattern_points *= square_size

    obj_points = []
    img_points = []
    h, w = cv.imread(img_names[0], cv.IMREAD_GRAYSCALE).shape[:2]  # TODO: use imquery call to retrieve results

    aruco_dicts = {
        'DICT_4X4_50': cv.aruco.DICT_4X4_50,
        'DICT_4X4_100': cv.aruco.DICT_4X4_100,
        'DICT_4X4_250': cv.aruco.DICT_4X4_250,
        'DICT_4X4_1000': cv.aruco.DICT_4X4_1000,
        'DICT_5X5_50': cv.aruco.DICT_5X5_50,
        'DICT_5X5_100': cv.aruco.DICT_5X5_100,
        'DICT_5X5_250': cv.aruco.DICT_5X5_250,
        'DICT_5X5_1000': cv.aruco.DICT_5X5_1000,
        'DICT_6X6_50': cv.aruco.DICT_6X6_50,
        'DICT_6X6_100': cv.aruco.DICT_6X6_100,
        'DICT_6X6_250': cv.aruco.DICT_6X6_250,
        'DICT_6X6_1000': cv.aruco.DICT_6X6_1000,
        'DICT_7X7_50': cv.aruco.DICT_7X7_50,
        'DICT_7X7_100': cv.aruco.DICT_7X7_100,
        'DICT_7X7_250': cv.aruco.DICT_7X7_250,
        'DICT_7X7_1000': cv.aruco.DICT_7X7_1000,
        'DICT_ARUCO_ORIGINAL': cv.aruco.DICT_ARUCO_ORIGINAL,
        'DICT_APRILTAG_16h5': cv.aruco.DICT_APRILTAG_16h5,
        'DICT_APRILTAG_25h9': cv.aruco.DICT_APRILTAG_25h9,
        'DICT_APRILTAG_36h10': cv.aruco.DICT_APRILTAG_36h10,
        'DICT_APRILTAG_36h11': cv.aruco.DICT_APRILTAG_36h11
    }

    if (aruco_dict_name not in set(aruco_dicts.keys())):
        print("unknown aruco dictionary name")
        return None
    aruco_dict = cv.aruco.getPredefinedDictionary(aruco_dicts[aruco_dict_name])
    board = cv.aruco.CharucoBoard(pattern_size, square_size, marker_size, aruco_dict)
    charuco_detector = cv.aruco.CharucoDetector(board)

    def processImage(fn):
        print('processing %s... ' % fn)
        img = cv.imread(fn, cv.IMREAD_GRAYSCALE)
        if img is None:
            print("Failed to load", fn)
            return None

        assert w == img.shape[1] and h == img.shape[0], ("size: %d x %d ... " % (img.shape[1], img.shape[0]))
        found = False
        corners = 0
        if pattern_type == 'chessboard':
            found, corners = cv.findChessboardCorners(img, pattern_size)
            if found:
                term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
                cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
                frame_img_points = corners.reshape(-1, 2)
                frame_obj_points = pattern_points
        elif pattern_type == 'charucoboard':
            corners, charucoIds, _, _ = charuco_detector.detectBoard(img)
            if (len(corners) > 0):
                frame_obj_points, frame_img_points = board.matchImagePoints(corners, charucoIds)
                found = True
            else:
                found = False
        else:
            print("unknown pattern type", pattern_type)
            return None

        if debug_dir:
            vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
            if pattern_type == 'chessboard':
                cv.drawChessboardCorners(vis, pattern_size, corners, found)
            elif pattern_type == 'charucoboard':
                cv.aruco.drawDetectedCornersCharuco(vis, corners, charucoIds=charucoIds)
            _path, name, _ext = splitfn(fn)
            outfile = os.path.join(debug_dir, name + '_board.png')
            cv.imwrite(outfile, vis)

        if not found:
            print('pattern not found')
            return None

        print('           %s... OK' % fn)
        return (frame_img_points, frame_obj_points)

    threads_num = int(args.get('--threads'))
    if threads_num <= 1:
        chessboards = [processImage(fn) for fn in img_names]
    else:
        print("Run with %d threads..." % threads_num)
        from multiprocessing.dummy import Pool as ThreadPool
        pool = ThreadPool(threads_num)
        chessboards = pool.map(processImage, img_names)

    chessboards = [x for x in chessboards if x is not None]
    for (corners, pattern_points) in chessboards:
        img_points.append(corners)
        obj_points.append(pattern_points)

    # calculate camera distortion
    rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None)

    print("\nRMS:", rms)
    print("camera matrix:\n", camera_matrix)
    print("distortion coefficients: ", dist_coefs.ravel())

    # undistort the image with the calibration
    print('')
    for fn in img_names if debug_dir else []:
        _path, name, _ext = splitfn(fn)
        img_found = os.path.join(debug_dir, name + '_board.png')
        outfile = os.path.join(debug_dir, name + '_undistorted.png')

        img = cv.imread(img_found)
        if img is None:
            continue

        h, w = img.shape[:2]
        newcameramtx, roi = cv.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h))

        dst = cv.undistort(img, camera_matrix, dist_coefs, None, newcameramtx)

        # crop and save the image
        x, y, w, h = roi
        dst = dst[y:y+h, x:x+w]

        print('Undistorted image written to: %s' % outfile)
        cv.imwrite(outfile, dst)

    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()