File: camera_calibration_show_extrinsics.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (240 lines) | stat: -rwxr-xr-x 8,143 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python

'''
Plot camera calibration extrinsics.

usage:
    camera_calibration_show_extrinsics.py [--calibration <input path>] [--cam_width] [--cam_height] [--scale_focal] [--patternCentric ]

default values:
    --calibration    : left_intrinsics.yml
    --cam_width      : 0.064/2
    --cam_height     : 0.048/2
    --scale_focal    : 40
    --patternCentric : True
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

from numpy import linspace

def inverse_homogeneoux_matrix(M):
    R = M[0:3, 0:3]
    T = M[0:3, 3]
    M_inv = np.identity(4)
    M_inv[0:3, 0:3] = R.T
    M_inv[0:3, 3] = -(R.T).dot(T)

    return M_inv

def transform_to_matplotlib_frame(cMo, X, inverse=False):
    M = np.identity(4)
    M[1,1] = 0
    M[1,2] = 1
    M[2,1] = -1
    M[2,2] = 0

    if inverse:
        return M.dot(inverse_homogeneoux_matrix(cMo).dot(X))
    else:
        return M.dot(cMo.dot(X))

def create_camera_model(camera_matrix, width, height, scale_focal, draw_frame_axis=False):
    fx = camera_matrix[0,0]
    fy = camera_matrix[1,1]
    focal = 2 / (fx + fy)
    f_scale = scale_focal * focal

    # draw image plane
    X_img_plane = np.ones((4,5))
    X_img_plane[0:3,0] = [-width, height, f_scale]
    X_img_plane[0:3,1] = [width, height, f_scale]
    X_img_plane[0:3,2] = [width, -height, f_scale]
    X_img_plane[0:3,3] = [-width, -height, f_scale]
    X_img_plane[0:3,4] = [-width, height, f_scale]

    # draw triangle above the image plane
    X_triangle = np.ones((4,3))
    X_triangle[0:3,0] = [-width, -height, f_scale]
    X_triangle[0:3,1] = [0, -2*height, f_scale]
    X_triangle[0:3,2] = [width, -height, f_scale]

    # draw camera
    X_center1 = np.ones((4,2))
    X_center1[0:3,0] = [0, 0, 0]
    X_center1[0:3,1] = [-width, height, f_scale]

    X_center2 = np.ones((4,2))
    X_center2[0:3,0] = [0, 0, 0]
    X_center2[0:3,1] = [width, height, f_scale]

    X_center3 = np.ones((4,2))
    X_center3[0:3,0] = [0, 0, 0]
    X_center3[0:3,1] = [width, -height, f_scale]

    X_center4 = np.ones((4,2))
    X_center4[0:3,0] = [0, 0, 0]
    X_center4[0:3,1] = [-width, -height, f_scale]

    # draw camera frame axis
    X_frame1 = np.ones((4,2))
    X_frame1[0:3,0] = [0, 0, 0]
    X_frame1[0:3,1] = [f_scale/2, 0, 0]

    X_frame2 = np.ones((4,2))
    X_frame2[0:3,0] = [0, 0, 0]
    X_frame2[0:3,1] = [0, f_scale/2, 0]

    X_frame3 = np.ones((4,2))
    X_frame3[0:3,0] = [0, 0, 0]
    X_frame3[0:3,1] = [0, 0, f_scale/2]

    if draw_frame_axis:
        return [X_img_plane, X_triangle, X_center1, X_center2, X_center3, X_center4, X_frame1, X_frame2, X_frame3]
    else:
        return [X_img_plane, X_triangle, X_center1, X_center2, X_center3, X_center4]

def create_board_model(extrinsics, board_width, board_height, square_size, draw_frame_axis=False):
    width = board_width*square_size
    height = board_height*square_size

    # draw calibration board
    X_board = np.ones((4,5))
    #X_board_cam = np.ones((extrinsics.shape[0],4,5))
    X_board[0:3,0] = [0,0,0]
    X_board[0:3,1] = [width,0,0]
    X_board[0:3,2] = [width,height,0]
    X_board[0:3,3] = [0,height,0]
    X_board[0:3,4] = [0,0,0]

    # draw board frame axis
    X_frame1 = np.ones((4,2))
    X_frame1[0:3,0] = [0, 0, 0]
    X_frame1[0:3,1] = [height/2, 0, 0]

    X_frame2 = np.ones((4,2))
    X_frame2[0:3,0] = [0, 0, 0]
    X_frame2[0:3,1] = [0, height/2, 0]

    X_frame3 = np.ones((4,2))
    X_frame3[0:3,0] = [0, 0, 0]
    X_frame3[0:3,1] = [0, 0, height/2]

    if draw_frame_axis:
        return [X_board, X_frame1, X_frame2, X_frame3]
    else:
        return [X_board]

def draw_camera_boards(ax, camera_matrix, cam_width, cam_height, scale_focal,
                       extrinsics, board_width, board_height, square_size,
                       patternCentric):
    from matplotlib import cm

    min_values = np.zeros((3,1))
    min_values = np.inf
    max_values = np.zeros((3,1))
    max_values = -np.inf

    if patternCentric:
        X_moving = create_camera_model(camera_matrix, cam_width, cam_height, scale_focal)
        X_static = create_board_model(extrinsics, board_width, board_height, square_size)
    else:
        X_static = create_camera_model(camera_matrix, cam_width, cam_height, scale_focal, True)
        X_moving = create_board_model(extrinsics, board_width, board_height, square_size)

    cm_subsection = linspace(0.0, 1.0, extrinsics.shape[0])
    colors = [ cm.jet(x) for x in cm_subsection ]

    for i in range(len(X_static)):
        X = np.zeros(X_static[i].shape)
        for j in range(X_static[i].shape[1]):
            X[:,j] = transform_to_matplotlib_frame(np.eye(4), X_static[i][:,j])
        ax.plot3D(X[0,:], X[1,:], X[2,:], color='r')
        min_values = np.minimum(min_values, X[0:3,:].min(1))
        max_values = np.maximum(max_values, X[0:3,:].max(1))

    for idx in range(extrinsics.shape[0]):
        R, _ = cv.Rodrigues(extrinsics[idx,0:3])
        cMo = np.eye(4,4)
        cMo[0:3,0:3] = R
        cMo[0:3,3] = extrinsics[idx,3:6]
        for i in range(len(X_moving)):
            X = np.zeros(X_moving[i].shape)
            for j in range(X_moving[i].shape[1]):
                X[0:4,j] = transform_to_matplotlib_frame(cMo, X_moving[i][0:4,j], patternCentric)
            ax.plot3D(X[0,:], X[1,:], X[2,:], color=colors[idx])
            min_values = np.minimum(min_values, X[0:3,:].min(1))
            max_values = np.maximum(max_values, X[0:3,:].max(1))

    return min_values, max_values

def main():
    import argparse

    parser = argparse.ArgumentParser(description='Plot camera calibration extrinsics.',
                                     formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--calibration', type=str, default='left_intrinsics.yml',
                        help='YAML camera calibration file.')
    parser.add_argument('--cam_width', type=float, default=0.064/2,
                        help='Width/2 of the displayed camera.')
    parser.add_argument('--cam_height', type=float, default=0.048/2,
                        help='Height/2 of the displayed camera.')
    parser.add_argument('--scale_focal', type=float, default=40,
                        help='Value to scale the focal length.')
    parser.add_argument('--patternCentric', action='store_true',
                        help='The calibration board is static and the camera is moving.')
    args = parser.parse_args()

    fs = cv.FileStorage(cv.samples.findFile(args.calibration), cv.FILE_STORAGE_READ)
    board_width = int(fs.getNode('board_width').real())
    board_height = int(fs.getNode('board_height').real())
    square_size = fs.getNode('square_size').real()
    camera_matrix = fs.getNode('camera_matrix').mat()
    extrinsics = fs.getNode('extrinsic_parameters').mat()

    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D  # pylint: disable=unused-variable

    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.set_aspect("auto")

    cam_width = args.cam_width
    cam_height = args.cam_height
    scale_focal = args.scale_focal
    min_values, max_values = draw_camera_boards(ax, camera_matrix, cam_width, cam_height,
                                                scale_focal, extrinsics, board_width,
                                                board_height, square_size, args.patternCentric)

    X_min = min_values[0]
    X_max = max_values[0]
    Y_min = min_values[1]
    Y_max = max_values[1]
    Z_min = min_values[2]
    Z_max = max_values[2]
    max_range = np.array([X_max-X_min, Y_max-Y_min, Z_max-Z_min]).max() / 2.0

    mid_x = (X_max+X_min) * 0.5
    mid_y = (Y_max+Y_min) * 0.5
    mid_z = (Z_max+Z_min) * 0.5
    ax.set_xlim(mid_x - max_range, mid_x + max_range)
    ax.set_ylim(mid_y - max_range, mid_y + max_range)
    ax.set_zlim(mid_z - max_range, mid_z + max_range)

    ax.set_xlabel('x')
    ax.set_ylabel('z')
    ax.set_zlabel('-y')
    ax.set_title('Extrinsic Parameters Visualization')

    plt.show()
    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()