1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#!/usr/bin/env python
'''
Feature-based image matching sample.
Note, that you will need the https://github.com/opencv/opencv_contrib repo for SIFT and SURF
USAGE
find_obj.py [--feature=<sift|surf|orb|akaze|brisk>[-flann]] [ <image1> <image2> ]
--feature - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
to feature name to use Flann-based matcher instead bruteforce.
Press left mouse button on a feature point to see its matching point.
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
from common import anorm, getsize
FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing
FLANN_INDEX_LSH = 6
def init_feature(name):
chunks = name.split('-')
if chunks[0] == 'sift':
detector = cv.SIFT_create()
norm = cv.NORM_L2
elif chunks[0] == 'surf':
detector = cv.xfeatures2d.SURF_create(800)
norm = cv.NORM_L2
elif chunks[0] == 'orb':
detector = cv.ORB_create(400)
norm = cv.NORM_HAMMING
elif chunks[0] == 'akaze':
detector = cv.AKAZE_create()
norm = cv.NORM_HAMMING
elif chunks[0] == 'brisk':
detector = cv.BRISK_create()
norm = cv.NORM_HAMMING
else:
return None, None
if 'flann' in chunks:
if norm == cv.NORM_L2:
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
else:
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
matcher = cv.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
else:
matcher = cv.BFMatcher(norm)
return detector, matcher
def filter_matches(kp1, kp2, matches, ratio = 0.75):
mkp1, mkp2 = [], []
for m in matches:
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
m = m[0]
mkp1.append( kp1[m.queryIdx] )
mkp2.append( kp2[m.trainIdx] )
p1 = np.float32([kp.pt for kp in mkp1])
p2 = np.float32([kp.pt for kp in mkp2])
kp_pairs = zip(mkp1, mkp2)
return p1, p2, list(kp_pairs)
def explore_match(win, img1, img2, kp_pairs, status = None, H = None):
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
vis = np.zeros((max(h1, h2), w1+w2), np.uint8)
vis[:h1, :w1] = img1
vis[:h2, w1:w1+w2] = img2
vis = cv.cvtColor(vis, cv.COLOR_GRAY2BGR)
if H is not None:
corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]])
corners = np.int32( cv.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) )
cv.polylines(vis, [corners], True, (255, 255, 255))
if status is None:
status = np.ones(len(kp_pairs), np.bool_)
status = status.reshape((len(kp_pairs), 1))
p1, p2 = [], [] # python 2 / python 3 change of zip unpacking
for kpp in kp_pairs:
p1.append(np.int32(kpp[0].pt))
p2.append(np.int32(np.array(kpp[1].pt) + [w1, 0]))
green = (0, 255, 0)
red = (0, 0, 255)
kp_color = (51, 103, 236)
for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
if inlier:
col = green
cv.circle(vis, (x1, y1), 2, col, -1)
cv.circle(vis, (x2, y2), 2, col, -1)
else:
col = red
r = 2
thickness = 3
cv.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness)
cv.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness)
cv.line(vis, (x2-r, y2-r), (x2+r, y2+r), col, thickness)
cv.line(vis, (x2-r, y2+r), (x2+r, y2-r), col, thickness)
vis0 = vis.copy()
for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
if inlier:
cv.line(vis, (x1, y1), (x2, y2), green)
cv.imshow(win, vis)
def onmouse(event, x, y, flags, param):
cur_vis = vis
if flags & cv.EVENT_FLAG_LBUTTON:
cur_vis = vis0.copy()
r = 8
m = (anorm(np.array(p1) - (x, y)) < r) | (anorm(np.array(p2) - (x, y)) < r)
idxs = np.where(m)[0]
kp1s, kp2s = [], []
for i in idxs:
(x1, y1), (x2, y2) = p1[i], p2[i]
col = (red, green)[status[i][0]]
cv.line(cur_vis, (x1, y1), (x2, y2), col)
kp1, kp2 = kp_pairs[i]
kp1s.append(kp1)
kp2s.append(kp2)
cur_vis = cv.drawKeypoints(cur_vis, kp1s, None, flags=4, color=kp_color)
cur_vis[:,w1:] = cv.drawKeypoints(cur_vis[:,w1:], kp2s, None, flags=4, color=kp_color)
cv.imshow(win, cur_vis)
cv.setMouseCallback(win, onmouse)
return vis
def main():
import sys, getopt
opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
opts = dict(opts)
feature_name = opts.get('--feature', 'brisk')
try:
fn1, fn2 = args
except:
fn1 = 'box.png'
fn2 = 'box_in_scene.png'
img1 = cv.imread(cv.samples.findFile(fn1), cv.IMREAD_GRAYSCALE)
img2 = cv.imread(cv.samples.findFile(fn2), cv.IMREAD_GRAYSCALE)
detector, matcher = init_feature(feature_name)
if img1 is None:
print('Failed to load fn1:', fn1)
sys.exit(1)
if img2 is None:
print('Failed to load fn2:', fn2)
sys.exit(1)
if detector is None:
print('unknown feature:', feature_name)
sys.exit(1)
print('using', feature_name)
kp1, desc1 = detector.detectAndCompute(img1, None)
kp2, desc2 = detector.detectAndCompute(img2, None)
print('img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)))
def match_and_draw(win):
print('matching...')
raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2
p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
if len(p1) >= 4:
H, status = cv.findHomography(p1, p2, cv.RANSAC, 5.0)
print('%d / %d inliers/matched' % (np.sum(status), len(status)))
else:
H, status = None, None
print('%d matches found, not enough for homography estimation' % len(p1))
_vis = explore_match(win, img1, img2, kp_pairs, status, H)
match_and_draw('find_obj')
cv.waitKey()
print('Done')
if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()
|