File: hist.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (125 lines) | stat: -rwxr-xr-x 3,705 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python

''' This is a sample for histogram plotting for RGB images and grayscale images for better understanding of colour distribution

Benefit : Learn how to draw histogram of images
          Get familier with cv.calcHist, cv.equalizeHist,cv.normalize and some drawing functions

Level : Beginner or Intermediate

Functions : 1) hist_curve : returns histogram of an image drawn as curves
            2) hist_lines : return histogram of an image drawn as bins ( only for grayscale images )

Usage : python hist.py <image_file>

Abid Rahman 3/14/12 debug Gary Bradski
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

bins = np.arange(256).reshape(256,1)

def hist_curve(im):
    h = np.zeros((300,256,3))
    if len(im.shape) == 2:
        color = [(255,255,255)]
    elif im.shape[2] == 3:
        color = [ (255,0,0),(0,255,0),(0,0,255) ]
    for ch, col in enumerate(color):
        hist_item = cv.calcHist([im],[ch],None,[256],[0,256])
        cv.normalize(hist_item,hist_item,0,255,cv.NORM_MINMAX)
        hist=np.int32(np.around(hist_item))
        pts = np.int32(np.column_stack((bins,hist)))
        cv.polylines(h,[pts],False,col)
    y=np.flipud(h)
    return y

def hist_lines(im):
    h = np.zeros((300,256,3))
    if len(im.shape)!=2:
        print("hist_lines applicable only for grayscale images")
        #print("so converting image to grayscale for representation"
        im = cv.cvtColor(im,cv.COLOR_BGR2GRAY)
    hist_item = cv.calcHist([im],[0],None,[256],[0,256])
    cv.normalize(hist_item,hist_item,0,255,cv.NORM_MINMAX)
    hist = np.int32(np.around(hist_item))
    for x,y in enumerate(hist):
        cv.line(h,(x,0),(x,y[0]),(255,255,255))
    y = np.flipud(h)
    return y


def main():
    import sys

    if len(sys.argv)>1:
        fname = sys.argv[1]
    else :
        fname = 'lena.jpg'
        print("usage : python hist.py <image_file>")

    im = cv.imread(cv.samples.findFile(fname))

    if im is None:
        print('Failed to load image file:', fname)
        sys.exit(1)

    gray = cv.cvtColor(im,cv.COLOR_BGR2GRAY)


    print(''' Histogram plotting \n
    Keymap :\n
    a - show histogram for color image in curve mode \n
    b - show histogram in bin mode \n
    c - show equalized histogram (always in bin mode) \n
    d - show histogram for gray image in curve mode \n
    e - show histogram for a normalized image in curve mode \n
    Esc - exit \n
    ''')

    cv.imshow('image',im)
    while True:
        k = cv.waitKey(0)
        if k == ord('a'):
            curve = hist_curve(im)
            cv.imshow('histogram',curve)
            cv.imshow('image',im)
            print('a')
        elif k == ord('b'):
            print('b')
            lines = hist_lines(im)
            cv.imshow('histogram',lines)
            cv.imshow('image',gray)
        elif k == ord('c'):
            print('c')
            equ = cv.equalizeHist(gray)
            lines = hist_lines(equ)
            cv.imshow('histogram',lines)
            cv.imshow('image',equ)
        elif k == ord('d'):
            print('d')
            curve = hist_curve(gray)
            cv.imshow('histogram',curve)
            cv.imshow('image',gray)
        elif k == ord('e'):
            print('e')
            norm = cv.normalize(gray, gray, alpha = 0,beta = 255,norm_type = cv.NORM_MINMAX)
            lines = hist_lines(norm)
            cv.imshow('histogram',lines)
            cv.imshow('image',norm)
        elif k == 27:
            print('ESC')
            cv.destroyAllWindows()
            break

    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()