File: kmeans.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (55 lines) | stat: -rwxr-xr-x 1,244 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python

'''
K-means clusterization sample.
Usage:
   kmeans.py

Keyboard shortcuts:
   ESC   - exit
   space - generate new distribution
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

from gaussian_mix import make_gaussians

def main():
    cluster_n = 5
    img_size = 512

    # generating bright palette
    colors = np.zeros((1, cluster_n, 3), np.uint8)
    colors[0,:] = 255
    colors[0,:,0] = np.arange(0, 180, 180.0/cluster_n)
    colors = cv.cvtColor(colors, cv.COLOR_HSV2BGR)[0]

    while True:
        print('sampling distributions...')
        points, _ = make_gaussians(cluster_n, img_size)

        term_crit = (cv.TERM_CRITERIA_EPS, 30, 0.1)
        _ret, labels, _centers = cv.kmeans(points, cluster_n, None, term_crit, 10, 0)

        img = np.zeros((img_size, img_size, 3), np.uint8)
        for (x, y), label in zip(np.int32(points), labels.ravel()):
            c = list(map(int, colors[label]))

            cv.circle(img, (x, y), 1, c, -1)

        cv.imshow('kmeans', img)
        ch = cv.waitKey(0)
        if ch == 27:
            break

    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()