File: texture_flow.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (55 lines) | stat: -rwxr-xr-x 1,231 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python

'''
Texture flow direction estimation.

Sample shows how cv.cornerEigenValsAndVecs function can be used
to estimate image texture flow direction.

Usage:
    texture_flow.py [<image>]
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

def main():
    import sys
    try:
        fn = sys.argv[1]
    except:
        fn = 'starry_night.jpg'

    img = cv.imread(cv.samples.findFile(fn))
    if img is None:
        print('Failed to load image file:', fn)
        sys.exit(1)

    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    h, w = img.shape[:2]

    eigen = cv.cornerEigenValsAndVecs(gray, 15, 3)
    eigen = eigen.reshape(h, w, 3, 2)  # [[e1, e2], v1, v2]
    flow = eigen[:,:,2]

    vis = img.copy()
    vis[:] = (192 + np.uint32(vis)) / 2
    d = 12
    points =  np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
    for x, y in np.int32(points):
        vx, vy = np.int32(flow[y, x]*d)
        cv.line(vis, (x-vx, y-vy), (x+vx, y+vy), (0, 0, 0), 1, cv.LINE_AA)
    cv.imshow('input', img)
    cv.imshow('flow', vis)
    cv.waitKey()

    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()