File: compareHist_Demo.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (69 lines) | stat: -rw-r--r-- 2,775 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse

## [Load three images with different environment settings]
parser = argparse.ArgumentParser(description='Code for Histogram Comparison tutorial.')
parser.add_argument('--input1', help='Path to input image 1.')
parser.add_argument('--input2', help='Path to input image 2.')
parser.add_argument('--input3', help='Path to input image 3.')
args = parser.parse_args()

src_base = cv.imread(args.input1)
src_test1 = cv.imread(args.input2)
src_test2 = cv.imread(args.input3)
if src_base is None or src_test1 is None or src_test2 is None:
    print('Could not open or find the images!')
    exit(0)
## [Load three images with different environment settings]

## [Convert to HSV]
hsv_base = cv.cvtColor(src_base, cv.COLOR_BGR2HSV)
hsv_test1 = cv.cvtColor(src_test1, cv.COLOR_BGR2HSV)
hsv_test2 = cv.cvtColor(src_test2, cv.COLOR_BGR2HSV)
## [Convert to HSV]

## [Convert to HSV half]
hsv_half_down = hsv_base[hsv_base.shape[0]//2:,:]
## [Convert to HSV half]

## [Using 50 bins for hue and 60 for saturation]
h_bins = 50
s_bins = 60
histSize = [h_bins, s_bins]

# hue varies from 0 to 179, saturation from 0 to 255
h_ranges = [0, 180]
s_ranges = [0, 256]
ranges = h_ranges + s_ranges # concat lists

# Use the 0-th and 1-st channels
channels = [0, 1]
## [Using 50 bins for hue and 60 for saturation]

## [Calculate the histograms for the HSV images]
hist_base = cv.calcHist([hsv_base], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_base, hist_base, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)

hist_half_down = cv.calcHist([hsv_half_down], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_half_down, hist_half_down, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)

hist_test1 = cv.calcHist([hsv_test1], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_test1, hist_test1, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)

hist_test2 = cv.calcHist([hsv_test2], channels, None, histSize, ranges, accumulate=False)
cv.normalize(hist_test2, hist_test2, alpha=0, beta=1, norm_type=cv.NORM_MINMAX)
## [Calculate the histograms for the HSV images]

## [Apply the histogram comparison methods]
for compare_method in range(4):
    base_base = cv.compareHist(hist_base, hist_base, compare_method)
    base_half = cv.compareHist(hist_base, hist_half_down, compare_method)
    base_test1 = cv.compareHist(hist_base, hist_test1, compare_method)
    base_test2 = cv.compareHist(hist_base, hist_test2, compare_method)

    print('Method:', compare_method, 'Perfect, Base-Half, Base-Test(1), Base-Test(2) :',\
          base_base, '/', base_half, '/', base_test1, '/', base_test2)
## [Apply the histogram comparison methods]