File: laplace_demo.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (59 lines) | stat: -rw-r--r-- 1,391 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
@file laplace_demo.py
@brief Sample code showing how to detect edges using the Laplace operator
"""
import sys
import cv2 as cv

def main(argv):
    # [variables]
    # Declare the variables we are going to use
    ddepth = cv.CV_16S
    kernel_size = 3
    window_name = "Laplace Demo"
    # [variables]

    # [load]
    imageName = argv[0] if len(argv) > 0 else 'lena.jpg'

    src = cv.imread(cv.samples.findFile(imageName), cv.IMREAD_COLOR) # Load an image

    # Check if image is loaded fine
    if src is None:
        print ('Error opening image')
        print ('Program Arguments: [image_name -- default lena.jpg]')
        return -1
    # [load]

    # [reduce_noise]
    # Remove noise by blurring with a Gaussian filter
    src = cv.GaussianBlur(src, (3, 3), 0)
    # [reduce_noise]

    # [convert_to_gray]
    # Convert the image to grayscale
    src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    # [convert_to_gray]

    # Create Window
    cv.namedWindow(window_name, cv.WINDOW_AUTOSIZE)

    # [laplacian]
    # Apply Laplace function
    dst = cv.Laplacian(src_gray, ddepth, ksize=kernel_size)
    # [laplacian]

    # [convert]
    # converting back to uint8
    abs_dst = cv.convertScaleAbs(dst)
    # [convert]

    # [display]
    cv.imshow(window_name, abs_dst)
    cv.waitKey(0)
    # [display]

    return 0

if __name__ == "__main__":
    main(sys.argv[1:])