File: video_threaded.py

package info (click to toggle)
opencv 4.10.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 282,092 kB
  • sloc: cpp: 1,178,079; xml: 682,621; python: 49,092; lisp: 31,150; java: 25,469; ansic: 11,039; javascript: 6,085; sh: 1,214; cs: 601; perl: 494; objc: 210; makefile: 173
file content (94 lines) | stat: -rwxr-xr-x 2,406 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python

'''
Multithreaded video processing sample.
Usage:
   video_threaded.py {<video device number>|<video file name>}

   Shows how python threading capabilities can be used
   to organize parallel captured frame processing pipeline
   for smoother playback.

Keyboard shortcuts:

   ESC - exit
   space - switch between multi and single threaded processing
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

from multiprocessing.pool import ThreadPool
from collections import deque

from common import clock, draw_str, StatValue
import video


class DummyTask:
    def __init__(self, data):
        self.data = data
    def ready(self):
        return True
    def get(self):
        return self.data

def main():
    import sys

    try:
        fn = sys.argv[1]
    except:
        fn = 0
    cap = video.create_capture(fn)


    def process_frame(frame, t0):
        # some intensive computation...
        frame = cv.medianBlur(frame, 19)
        frame = cv.medianBlur(frame, 19)
        return frame, t0

    threadn = cv.getNumberOfCPUs()
    pool = ThreadPool(processes = threadn)
    pending = deque()

    threaded_mode = True

    latency = StatValue()
    frame_interval = StatValue()
    last_frame_time = clock()
    while True:
        while len(pending) > 0 and pending[0].ready():
            res, t0 = pending.popleft().get()
            latency.update(clock() - t0)
            draw_str(res, (20, 20), "threaded      :  " + str(threaded_mode))
            draw_str(res, (20, 40), "latency        :  %.1f ms" % (latency.value*1000))
            draw_str(res, (20, 60), "frame interval :  %.1f ms" % (frame_interval.value*1000))
            cv.imshow('threaded video', res)
        if len(pending) < threadn:
            _ret, frame = cap.read()
            t = clock()
            frame_interval.update(t - last_frame_time)
            last_frame_time = t
            if threaded_mode:
                task = pool.apply_async(process_frame, (frame.copy(), t))
            else:
                task = DummyTask(process_frame(frame, t))
            pending.append(task)
        ch = cv.waitKey(1)
        if ch == ord(' '):
            threaded_mode = not threaded_mode
        if ch == 27:
            break

    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()