| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 
 | <!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8">
    <title>Object Detection Example</title>
    <link href="js_example_style.css" rel="stylesheet" type="text/css" />
</head>
<body>
<h2>Object Detection Example</h2>
<p>
    This tutorial shows you how to write an object detection example with OpenCV.js.<br>
    To try the example you should click the <b>modelFile</b> button(and <b>configFile</b> button if needed) to upload inference model.
    You can find the model URLs and parameters in the <a href="#appendix">model info</a> section.
    Then You should change the parameters in the first code snippet according to the uploaded model.
    Finally click <b>Try it</b> button to see the result. You can choose any other images.<br>
</p>
<div class="control"><button id="tryIt" disabled>Try it</button></div>
<div>
    <table cellpadding="0" cellspacing="0" width="0" border="0">
        <tr>
            <td>
                <canvas id="canvasInput" width="400" height="400"></canvas>
            </td>
            <td>
                <canvas id="canvasOutput" style="visibility: hidden;" width="400" height="400"></canvas>
            </td>
        </tr>
        <tr>
            <td>
                <div class="caption">
                    canvasInput <input type="file" id="fileInput" name="file" accept="image/*">
                </div>
            </td>
            <td>
                <p id='status' align="left"></p>
            </td>
        </tr>
        <tr>
            <td>
                <div class="caption">
                    modelFile <input type="file" id="modelFile" name="file">
                </div>
            </td>
        </tr>
        <tr>
            <td>
                <div class="caption">
                    configFile <input type="file" id="configFile">
                </div>
            </td>
        </tr>
    </table>
</div>
<div>
    <p class="err" id="errorMessage"></p>
</div>
<div>
    <h3>Help function</h3>
    <p>1.The parameters for model inference which you can modify to investigate more models.</p>
    <textarea class="code" rows="15" cols="100" id="codeEditor" spellcheck="false"></textarea>
    <p>2.Main loop in which will read the image from canvas and do inference once.</p>
    <textarea class="code" rows="16" cols="100" id="codeEditor1" spellcheck="false"></textarea>
    <p>3.Load labels from txt file and process it into an array.</p>
    <textarea class="code" rows="7" cols="100" id="codeEditor2" spellcheck="false"></textarea>
    <p>4.Get blob from image as input for net, and standardize it with <b>mean</b> and <b>std</b>.</p>
    <textarea class="code" rows="17" cols="100" id="codeEditor3" spellcheck="false"></textarea>
    <p>5.Fetch model file and save to emscripten file system once click the input button.</p>
    <textarea class="code" rows="17" cols="100" id="codeEditor4" spellcheck="false"></textarea>
    <p>6.The post-processing, including get boxes from output and draw boxes into the image.</p>
    <textarea class="code" rows="35" cols="100" id="codeEditor5" spellcheck="false"></textarea>
</div>
<div id="appendix">
    <h2>Model Info:</h2>
</div>
<script src="utils.js" type="text/javascript"></script>
<script src="js_dnn_example_helper.js" type="text/javascript"></script>
<script id="codeSnippet" type="text/code-snippet">
inputSize = [300, 300];
mean = [127.5, 127.5, 127.5];
std = 0.007843;
swapRB = false;
confThreshold = 0.5;
nmsThreshold = 0.4;
// The type of output, can be YOLO or SSD
outType = "SSD";
// url for label file, can from local or Internet
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/4.x/samples/data/dnn/object_detection_classes_pascal_voc.txt";
</script>
<script id="codeSnippet1" type="text/code-snippet">
main = async function() {
    const labels = await loadLables(labelsUrl);
    const input = getBlobFromImage(inputSize, mean, std, swapRB, 'canvasInput');
    let net = cv.readNet(configPath, modelPath);
    net.setInput(input);
    const start = performance.now();
    const result = net.forward();
    const time  = performance.now()-start;
    const output = postProcess(result, labels);
    updateResult(output, time);
    input.delete();
    net.delete();
    result.delete();
}
</script>
<script id="codeSnippet5" type="text/code-snippet">
postProcess = function(result, labels) {
    let canvasOutput = document.getElementById('canvasOutput');
    const outputWidth = canvasOutput.width;
    const outputHeight = canvasOutput.height;
    const resultData = result.data32F;
    // Get the boxes(with class and confidence) from the output
    let boxes = [];
    switch(outType) {
        case "YOLO": {
            const vecNum = result.matSize[0];
            const vecLength = result.matSize[1];
            const classNum = vecLength - 5;
            for (let i = 0; i < vecNum; ++i) {
                let vector = resultData.slice(i*vecLength, (i+1)*vecLength);
                let scores = vector.slice(5, vecLength);
                let classId = scores.indexOf(Math.max(...scores));
                let confidence = scores[classId];
                if (confidence > confThreshold) {
                    let center_x = Math.round(vector[0] * outputWidth);
                    let center_y = Math.round(vector[1] * outputHeight);
                    let width = Math.round(vector[2] * outputWidth);
                    let height = Math.round(vector[3] * outputHeight);
                    let left = Math.round(center_x - width / 2);
                    let top = Math.round(center_y - height / 2);
                    let box = {
                        scores: scores,
                        classId: classId,
                        confidence: confidence,
                        bounding: [left, top, width, height],
                        toDraw: true
                    }
                    boxes.push(box);
                }
            }
            // NMS(Non Maximum Suppression) algorithm
            let boxNum = boxes.length;
            let tmp_boxes = [];
            let sorted_boxes = [];
            for (let c = 0; c < classNum; ++c) {
                for (let i = 0; i < boxes.length; ++i) {
                    tmp_boxes[i] = [boxes[i], i];
                }
                sorted_boxes = tmp_boxes.sort((a, b) => { return (b[0].scores[c] - a[0].scores[c]); });
                for (let i = 0; i < boxNum; ++i) {
                    if (sorted_boxes[i][0].scores[c] === 0) continue;
                    else {
                        for (let j = i + 1; j < boxNum; ++j) {
                            if (IOU(sorted_boxes[i][0], sorted_boxes[j][0]) >= nmsThreshold) {
                                boxes[sorted_boxes[j][1]].toDraw = false;
                            }
                        }
                    }
                }
            }
        } break;
        case "SSD": {
            const vecNum = result.matSize[2];
            const vecLength = 7;
            for (let i = 0; i < vecNum; ++i) {
                let vector = resultData.slice(i*vecLength, (i+1)*vecLength);
                let confidence = vector[2];
                if (confidence > confThreshold) {
                    let left, top, right, bottom, width, height;
                    left = Math.round(vector[3]);
                    top = Math.round(vector[4]);
                    right = Math.round(vector[5]);
                    bottom = Math.round(vector[6]);
                    width = right - left + 1;
                    height = bottom - top + 1;
                    if (width <= 2 || height <= 2) {
                        left = Math.round(vector[3] * outputWidth);
                        top = Math.round(vector[4] * outputHeight);
                        right = Math.round(vector[5] * outputWidth);
                        bottom = Math.round(vector[6] * outputHeight);
                        width = right - left + 1;
                        height = bottom - top + 1;
                    }
                    let box = {
                        classId: vector[1] - 1,
                        confidence: confidence,
                        bounding: [left, top, width, height],
                        toDraw: true
                    }
                    boxes.push(box);
                }
            }
        } break;
        default:
            console.error(`Unsupported output type ${outType}`)
    }
    // Draw the saved box into the image
    let image = cv.imread("canvasInput");
    let output = new cv.Mat(outputWidth, outputHeight, cv.CV_8UC3);
    cv.cvtColor(image, output, cv.COLOR_RGBA2RGB);
    let boxNum = boxes.length;
    for (let i = 0; i < boxNum; ++i) {
        if (boxes[i].toDraw) {
            drawBox(boxes[i]);
        }
    }
    return output;
    // Calculate the IOU(Intersection over Union) of two boxes
    function IOU(box1, box2) {
        let bounding1 = box1.bounding;
        let bounding2 = box2.bounding;
        let s1 = bounding1[2] * bounding1[3];
        let s2 = bounding2[2] * bounding2[3];
        let left1 = bounding1[0];
        let right1 = left1 + bounding1[2];
        let left2 = bounding2[0];
        let right2 = left2 + bounding2[2];
        let overlapW = calOverlap([left1, right1], [left2, right2]);
        let top1 = bounding2[1];
        let bottom1 = top1 + bounding1[3];
        let top2 = bounding2[1];
        let bottom2 = top2 + bounding2[3];
        let overlapH = calOverlap([top1, bottom1], [top2, bottom2]);
        let overlapS = overlapW * overlapH;
        return overlapS / (s1 + s2 + overlapS);
    }
    // Calculate the overlap range of two vector
    function calOverlap(range1, range2) {
        let min1 = range1[0];
        let max1 = range1[1];
        let min2 = range2[0];
        let max2 = range2[1];
        if (min2 > min1 && min2 < max1) {
            return max1 - min2;
        } else if (max2 > min1 && max2 < max1) {
            return max2 - min1;
        } else {
            return 0;
        }
    }
    // Draw one predict box into the origin image
    function drawBox(box) {
        let bounding = box.bounding;
        let left = bounding[0];
        let top = bounding[1];
        let width = bounding[2];
        let height = bounding[3];
        cv.rectangle(output, new cv.Point(left, top), new cv.Point(left + width, top + height),
                             new cv.Scalar(0, 255, 0));
        cv.rectangle(output, new cv.Point(left, top), new cv.Point(left + width, top + 15),
                             new cv.Scalar(255, 255, 255), cv.FILLED);
        let text = `${labels[box.classId]}: ${box.confidence.toFixed(4)}`;
        cv.putText(output, text, new cv.Point(left, top + 10), cv.FONT_HERSHEY_SIMPLEX, 0.3,
                                 new cv.Scalar(0, 0, 0));
    }
}
</script>
<script type="text/javascript">
    let jsonUrl = "js_object_detection_model_info.json";
    drawInfoTable(jsonUrl, 'appendix');
    let utils = new Utils('errorMessage');
    utils.loadCode('codeSnippet', 'codeEditor');
    utils.loadCode('codeSnippet1', 'codeEditor1');
    let loadLablesCode = 'loadLables = ' + loadLables.toString();
    document.getElementById('codeEditor2').value = loadLablesCode;
    let getBlobFromImageCode = 'getBlobFromImage = ' + getBlobFromImage.toString();
    document.getElementById('codeEditor3').value = getBlobFromImageCode;
    let loadModelCode = 'loadModel = ' + loadModel.toString();
    document.getElementById('codeEditor4').value = loadModelCode;
    utils.loadCode('codeSnippet5', 'codeEditor5');
    let canvas = document.getElementById('canvasInput');
    let ctx = canvas.getContext('2d');
    let img = new Image();
    img.crossOrigin = 'anonymous';
    img.src = 'lena.png';
    img.onload = function() {
        ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
    };
    let tryIt = document.getElementById('tryIt');
    tryIt.addEventListener('click', () => {
        initStatus();
        document.getElementById('status').innerHTML = 'Running function main()...';
        utils.executeCode('codeEditor');
        utils.executeCode('codeEditor1');
        if (modelPath === "") {
            document.getElementById('status').innerHTML = 'Runing failed.';
            utils.printError('Please upload model file by clicking the button first.');
        } else {
            setTimeout(main, 1);
        }
    });
    let fileInput = document.getElementById('fileInput');
    fileInput.addEventListener('change', (e) => {
        initStatus();
        loadImageToCanvas(e, 'canvasInput');
    });
    let configPath = "";
    let configFile = document.getElementById('configFile');
    configFile.addEventListener('change', async (e) => {
        initStatus();
        configPath = await loadModel(e);
        document.getElementById('status').innerHTML = `The config file '${configPath}' is created successfully.`;
    });
    let modelPath = "";
    let modelFile = document.getElementById('modelFile');
    modelFile.addEventListener('change', async (e) => {
        initStatus();
        modelPath = await loadModel(e);
        document.getElementById('status').innerHTML = `The model file '${modelPath}' is created successfully.`;
        configPath = "";
        configFile.value = "";
    });
    utils.loadOpenCv(() => {
        tryIt.removeAttribute('disabled');
    });
    var main = async function() {};
    var postProcess = function(result, labels) {};
    utils.executeCode('codeEditor1');
    utils.executeCode('codeEditor2');
    utils.executeCode('codeEditor3');
    utils.executeCode('codeEditor4');
    utils.executeCode('codeEditor5');
    function updateResult(output, time) {
        try{
            let canvasOutput = document.getElementById('canvasOutput');
            canvasOutput.style.visibility = "visible";
            cv.imshow('canvasOutput', output);
            document.getElementById('status').innerHTML = `<b>Model:</b> ${modelPath}<br>
                                                           <b>Inference time:</b> ${time.toFixed(2)} ms`;
        } catch(e) {
            console.log(e);
        }
    }
    function initStatus() {
        document.getElementById('status').innerHTML = '';
        document.getElementById('canvasOutput').style.visibility = "hidden";
        utils.clearError();
    }
</script>
</body>
</html>
 |