1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/*
This file was part of GSoC Project: Facemark API for OpenCV
Final report: https://gist.github.com/kurnianggoro/74de9121e122ad0bd825176751d47ecc
Student: Laksono Kurnianggoro
Mentor: Delia Passalacqua
*/
/*----------------------------------------------
* Usage:
* facemark_demo_aam <face_cascade_model> <eyes_cascade_model> <training_images> <annotation_files> [test_files]
*
* Example:
* facemark_demo_aam ../face_cascade.xml ../eyes_cascade.xml ../images_train.txt ../points_train.txt ../test.txt
*
* Notes:
* the user should provides the list of training images_train
* accompanied by their corresponding landmarks location in separated files.
* example of contents for images_train.txt:
* ../trainset/image_0001.png
* ../trainset/image_0002.png
* example of contents for points_train.txt:
* ../trainset/image_0001.pts
* ../trainset/image_0002.pts
* where the image_xxxx.pts contains the position of each face landmark.
* example of the contents:
* version: 1
* n_points: 68
* {
* 115.167660 220.807529
* 116.164839 245.721357
* 120.208690 270.389841
* ...
* }
* example of the dataset is available at https://ibug.doc.ic.ac.uk/download/annotations/lfpw.zip
*--------------------------------------------------*/
#include <stdio.h>
#include <fstream>
#include <sstream>
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/face.hpp"
#include <iostream>
#include <string>
#include <ctime>
using namespace std;
using namespace cv;
using namespace cv::face;
bool myDetector( InputArray image, OutputArray ROIs, CascadeClassifier *face_cascade);
bool getInitialFitting(Mat image, Rect face, std::vector<Point2f> s0,
CascadeClassifier eyes_cascade, Mat & R, Point2f & Trans, float & scale);
bool parseArguments(int argc, char** argv, String & cascade,
String & model, String & images, String & annotations, String & testImages
);
int main(int argc, char** argv )
{
String cascade_path,eyes_cascade_path,images_path, annotations_path, test_images_path;
if(!parseArguments(argc, argv, cascade_path,eyes_cascade_path,images_path, annotations_path, test_images_path))
return -1;
//! [instance_creation]
/*create the facemark instance*/
FacemarkAAM::Params params;
params.scales.push_back(2.0);
params.scales.push_back(4.0);
params.model_filename = "AAM.yaml";
Ptr<FacemarkAAM> facemark = FacemarkAAM::create(params);
//! [instance_creation]
//! [load_dataset]
/*Loads the dataset*/
std::vector<String> images_train;
std::vector<String> landmarks_train;
loadDatasetList(images_path,annotations_path,images_train,landmarks_train);
//! [load_dataset]
//! [add_samples]
Mat image;
std::vector<Point2f> facial_points;
for(size_t i=0;i<images_train.size();i++){
image = imread(images_train[i].c_str());
loadFacePoints(landmarks_train[i],facial_points);
facemark->addTrainingSample(image, facial_points);
}
//! [add_samples]
//! [training]
/* trained model will be saved to AAM.yml */
facemark->training();
//! [training]
//! [load_test_images]
/*test using some images*/
String testFiles(images_path), testPts(annotations_path);
if(!test_images_path.empty()){
testFiles = test_images_path;
testPts = test_images_path; //unused
}
std::vector<String> images;
std::vector<String> facePoints;
loadDatasetList(testFiles, testPts, images, facePoints);
//! [load_test_images]
//! [trainsformation_variables]
float scale ;
Point2f T;
Mat R;
//! [trainsformation_variables]
//! [base_shape]
FacemarkAAM::Data data;
facemark->getData(&data);
std::vector<Point2f> s0 = data.s0;
//! [base_shape]
//! [fitting]
/*fitting process*/
std::vector<Rect> faces;
//! [load_cascade_models]
CascadeClassifier face_cascade(cascade_path);
CascadeClassifier eyes_cascade(eyes_cascade_path);
//! [load_cascade_models]
for(int i=0;i<(int)images.size();i++){
printf("image #%i ", i);
//! [detect_face]
image = imread(images[i]);
myDetector(image, faces, &face_cascade);
//! [detect_face]
if(faces.size()>0){
//! [get_initialization]
std::vector<FacemarkAAM::Config> conf;
std::vector<Rect> faces_eyes;
for(unsigned j=0;j<faces.size();j++){
if(getInitialFitting(image,faces[j],s0,eyes_cascade, R,T,scale)){
conf.push_back(FacemarkAAM::Config(R,T,scale,(int)params.scales.size()-1));
faces_eyes.push_back(faces[j]);
}
}
//! [get_initialization]
//! [fitting_process]
if(conf.size()>0){
printf(" - face with eyes found %i ", (int)conf.size());
std::vector<std::vector<Point2f> > landmarks;
double newtime = (double)getTickCount();
facemark->fitConfig(image, faces_eyes, landmarks, conf);
double fittime = ((getTickCount() - newtime)/getTickFrequency());
for(unsigned j=0;j<landmarks.size();j++){
drawFacemarks(image, landmarks[j],Scalar(0,255,0));
}
printf("%f ms\n",fittime*1000);
imshow("fitting", image);
waitKey(0);
}else{
printf("initialization cannot be computed - skipping\n");
}
//! [fitting_process]
}
} //for
//! [fitting]
}
bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
{
Mat gray;
if (image.channels() > 1)
cvtColor(image, gray, COLOR_BGR2GRAY);
else
gray = image.getMat().clone();
equalizeHist(gray, gray);
std::vector<Rect> faces_;
face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
Mat(faces_).copyTo(faces);
return true;
}
bool getInitialFitting(Mat image, Rect face, std::vector<Point2f> s0 ,CascadeClassifier eyes_cascade, Mat & R, Point2f & Trans, float & scale){
std::vector<Point2f> mybase;
std::vector<Point2f> T;
std::vector<Point2f> base = Mat(Mat(s0)+Scalar(image.cols/2,image.rows/2)).reshape(2);
std::vector<Point2f> base_shape,base_shape2 ;
Point2f e1 = Point2f((float)((base[39].x+base[36].x)/2.0),(float)((base[39].y+base[36].y)/2.0)); //eye1
Point2f e2 = Point2f((float)((base[45].x+base[42].x)/2.0),(float)((base[45].y+base[42].y)/2.0)); //eye2
if(face.width==0 || face.height==0) return false;
std::vector<Point2f> eye;
bool found=false;
Mat faceROI = image( face);
std::vector<Rect> eyes;
//-- In each face, detect eyes
eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, CASCADE_SCALE_IMAGE, Size(20, 20) );
if(eyes.size()==2){
found = true;
int j=0;
Point2f c1( (float)(face.x + eyes[j].x + eyes[j].width*0.5), (float)(face.y + eyes[j].y + eyes[j].height*0.5));
j=1;
Point2f c2( (float)(face.x + eyes[j].x + eyes[j].width*0.5), (float)(face.y + eyes[j].y + eyes[j].height*0.5));
Point2f pivot;
double a0,a1;
if(c1.x<c2.x){
pivot = c1;
a0 = atan2(c2.y-c1.y, c2.x-c1.x);
}else{
pivot = c2;
a0 = atan2(c1.y-c2.y, c1.x-c2.x);
}
scale = (float)(norm(Mat(c1)-Mat(c2))/norm(Mat(e1)-Mat(e2)));
mybase= Mat(Mat(s0)*scale).reshape(2);
Point2f ey1 = Point2f((float)((mybase[39].x+mybase[36].x)/2.0),(float)((mybase[39].y+mybase[36].y)/2.0));
Point2f ey2 = Point2f((float)((mybase[45].x+mybase[42].x)/2.0),(float)((mybase[45].y+mybase[42].y)/2.0));
#define TO_DEGREE 180.0/3.14159265
a1 = atan2(ey2.y-ey1.y, ey2.x-ey1.x);
Mat rot = getRotationMatrix2D(Point2f(0,0), (a1-a0)*TO_DEGREE, 1.0);
rot(Rect(0,0,2,2)).convertTo(R, CV_32F);
base_shape = Mat(Mat(R*scale*Mat(Mat(s0).reshape(1)).t()).t()).reshape(2);
ey1 = Point2f((float)((base_shape[39].x+base_shape[36].x)/2.0),(float)((base_shape[39].y+base_shape[36].y)/2.0));
ey2 = Point2f((float)((base_shape[45].x+base_shape[42].x)/2.0),(float)((base_shape[45].y+base_shape[42].y)/2.0));
T.push_back(Point2f(pivot.x-ey1.x,pivot.y-ey1.y));
Trans = Point2f(pivot.x-ey1.x,pivot.y-ey1.y);
return true;
}else{
Trans = Point2f( (float)(face.x + face.width*0.5),(float)(face.y + face.height*0.5));
}
return found;
}
bool parseArguments(int argc, char** argv,
String & cascade,
String & model,
String & images,
String & annotations,
String & test_images
){
const String keys =
"{ @f face-cascade | | (required) path to the cascade model file for the face detector }"
"{ @e eyes-cascade | | (required) path to the cascade model file for the eyes detector }"
"{ @i images | | (required) path of a text file contains the list of paths to all training images}"
"{ @a annotations | | (required) Path of a text file contains the list of paths to all annotations files}"
"{ @t test-images | | Path of a text file contains the list of paths to the test images}"
"{ help h usage ? | | facemark_demo_aam -face-cascade -eyes-cascade -images -annotations [-t]\n"
" example: facemark_demo_aam ../face_cascade.xml ../eyes_cascade.xml ../images_train.txt ../points_train.txt ../test.txt}"
;
CommandLineParser parser(argc, argv,keys);
parser.about("hello");
if (parser.has("help")){
parser.printMessage();
return false;
}
cascade = String(parser.get<String>("face-cascade"));
model = String(parser.get<string>("eyes-cascade"));
images = String(parser.get<string>("images"));
annotations = String(parser.get<string>("annotations"));
test_images = String(parser.get<string>("test-images"));
if(cascade.empty() || model.empty() || images.empty() || annotations.empty()){
std::cerr << "one or more required arguments are not found" << '\n';
cout<<"face-cascade : "<<cascade.c_str()<<endl;
cout<<"eyes-cascade : "<<model.c_str()<<endl;
cout<<"images : "<<images.c_str()<<endl;
cout<<"annotations : "<<annotations.c_str()<<endl;
parser.printMessage();
return false;
}
return true;
}
|