1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/*----------------------------------------------
* the user should provide the list of training images_train,
* accompanied by their corresponding landmarks location in separated files.
* example of contents for images.txt:
* ../trainset/image_0001.png
* ../trainset/image_0002.png
* example of contents for annotation.txt:
* ../trainset/image_0001.pts
* ../trainset/image_0002.pts
* where the image_xxxx.pts contains the position of each face landmark.
* example of the contents:
* version: 1
* n_points: 68
* {
* 115.167660 220.807529
* 116.164839 245.721357
* 120.208690 270.389841
* ...
* }
* example of the dataset is available at https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
*--------------------------------------------------*/
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/objdetect.hpp"
#include <iostream>
#include <vector>
#include <string>
using namespace std;
using namespace cv;
using namespace cv::face;
static bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
{
Mat gray;
if (image.channels() > 1)
cvtColor(image, gray, COLOR_BGR2GRAY);
else
gray = image.getMat().clone();
equalizeHist(gray, gray);
std::vector<Rect> faces_;
face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
Mat(faces_).copyTo(faces);
return true;
}
int main(int argc,char** argv){
//Give the path to the directory containing all the files containing data
CommandLineParser parser(argc, argv,
"{ help h usage ? | | give the following arguments in following format }"
"{ images i | | (required) path to images txt file [example - /data/images.txt] }"
"{ annotations a |. | (required) path to annotations txt file [example - /data/annotations.txt] }"
"{ config c | | (required) path to configuration xml file containing parameters for training.[example - /data/config.xml] }"
"{ model m | | (required) path to file containing trained model for face landmark detection[example - /data/model.dat] }"
"{ width w | 460 | The width which you want all images to get to scale the annotations. large images are slow to process [default = 460] }"
"{ height h | 460 | The height which you want all images to get to scale the annotations. large images are slow to process [default = 460] }"
"{ face_cascade f | | Path to the face cascade xml file which you want to use as a detector}"
);
// Read in the input arguments
if (parser.has("help")){
parser.printMessage();
cerr << "TIP: Use absolute paths to avoid any problems with the software!" << endl;
return 0;
}
string annotations(parser.get<string>("annotations"));
string imagesList(parser.get<string>("images"));
//default initialisation
Size scale(460,460);
scale = Size(parser.get<int>("width"),parser.get<int>("height"));
if (annotations.empty()){
parser.printMessage();
cerr << "Name for annotations file not found. Aborting...." << endl;
return -1;
}
if (imagesList.empty()){
parser.printMessage();
cerr << "Name for file containing image list not found. Aborting....." << endl;
return -1;
}
string configfile_name(parser.get<string>("config"));
if (configfile_name.empty()){
parser.printMessage();
cerr << "No configuration file name found which contains the parameters for training" << endl;
return -1;
}
string modelfile_name(parser.get<string>("model"));
if (modelfile_name.empty()){
parser.printMessage();
cerr << "No name for the model_file found in which the trained model has to be saved" << endl;
return -1;
}
string cascade_name(parser.get<string>("face_cascade"));
if (cascade_name.empty()){
parser.printMessage();
cerr << "The name of the cascade classifier to be loaded to detect faces is not found" << endl;
return -1;
}
//create a pointer to call the base class
//pass the face cascade xml file which you want to pass as a detector
CascadeClassifier face_cascade;
face_cascade.load(cascade_name);
FacemarkKazemi::Params params;
params.configfile = configfile_name;
Ptr<FacemarkKazemi> facemark = FacemarkKazemi::create(params);
facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
std::vector<String> images;
std::vector<std::vector<Point2f> > facePoints;
loadTrainingData(imagesList, annotations, images, facePoints, 0.0);
//gets landmarks and corresponding image names in both the vectors
vector<Mat> Trainimages;
std::vector<std::vector<Point2f> > Trainlandmarks;
//vector to store images
Mat src;
for(unsigned long i=0;i<images.size();i++){
src = imread(images[i]);
if(src.empty()){
cout<<images[i]<<endl;
cerr<<string("Image not found\n.Aborting...")<<endl;
continue;
}
Trainimages.push_back(src);
Trainlandmarks.push_back(facePoints[i]);
}
cout<<"Got data"<<endl;
facemark->training(Trainimages,Trainlandmarks,configfile_name,scale,modelfile_name);
cout<<"Training complete"<<endl;
return 0;
}
|