File: sample_train_landmark_detector2.cpp

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (134 lines) | stat: -rw-r--r-- 5,471 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*----------------------------------------------
 * the user should provide the list of training images_train,
 * accompanied by their corresponding landmarks location in separated files.
 * example of contents for images.txt:
 * ../trainset/image_0001.png
 * ../trainset/image_0002.png
 * example of contents for annotation.txt:
 * ../trainset/image_0001.pts
 * ../trainset/image_0002.pts
 * where the image_xxxx.pts contains the position of each face landmark.
 * example of the contents:
 *  version: 1
 *  n_points:  68
 *  {
 *  115.167660 220.807529
 *  116.164839 245.721357
 *  120.208690 270.389841
 *  ...
 *  }
 * example of the dataset is available at https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
 *--------------------------------------------------*/
#include "opencv2/face.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/objdetect.hpp"
#include <iostream>
#include <vector>
#include <string>

using namespace std;
using namespace cv;
using namespace cv::face;

static bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
{
    Mat gray;

    if (image.channels() > 1)
        cvtColor(image, gray, COLOR_BGR2GRAY);
    else
        gray = image.getMat().clone();

    equalizeHist(gray, gray);

    std::vector<Rect> faces_;
    face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
    Mat(faces_).copyTo(faces);
    return true;
}

int main(int argc,char** argv){
    //Give the path to the directory containing all the files containing data
   CommandLineParser parser(argc, argv,
        "{ help h usage ? |      | give the following arguments in following format }"
        "{ images i       |      | (required) path to images txt file      [example - /data/images.txt] }"
        "{ annotations a  |.     | (required) path to annotations txt file [example - /data/annotations.txt] }"
        "{ config c       |      | (required) path to configuration xml file containing parameters for training.[example - /data/config.xml] }"
        "{ model m        |      | (required) path to file containing trained model for face landmark detection[example - /data/model.dat] }"
        "{ width w        |  460 | The width which you want all images to get to scale the annotations. large images are slow to process [default = 460] }"
        "{ height h       |  460 | The height which you want all images to get to scale the annotations. large images are slow to process [default = 460] }"
        "{ face_cascade f |      | Path to the face cascade xml file which you want to use as a detector}"
    );
    // Read in the input arguments
    if (parser.has("help")){
        parser.printMessage();
        cerr << "TIP: Use absolute paths to avoid any problems with the software!" << endl;
        return 0;
    }
    string annotations(parser.get<string>("annotations"));
    string imagesList(parser.get<string>("images"));
    //default initialisation
    Size scale(460,460);
    scale = Size(parser.get<int>("width"),parser.get<int>("height"));
    if (annotations.empty()){
        parser.printMessage();
        cerr << "Name for annotations file not  found. Aborting...." << endl;
        return -1;
    }
    if (imagesList.empty()){
        parser.printMessage();
        cerr << "Name for file containing image list not found. Aborting....." << endl;
        return -1;
    }
    string configfile_name(parser.get<string>("config"));
    if (configfile_name.empty()){
        parser.printMessage();
        cerr << "No configuration file name found which contains the parameters for training" << endl;
        return -1;
    }
    string modelfile_name(parser.get<string>("model"));
    if (modelfile_name.empty()){
        parser.printMessage();
        cerr << "No name  for the model_file found in which the trained model has to be saved" << endl;
        return -1;
    }
    string cascade_name(parser.get<string>("face_cascade"));
    if (cascade_name.empty()){
        parser.printMessage();
        cerr << "The name of the cascade classifier to be loaded to detect faces is not found" << endl;
        return -1;
    }
    //create a pointer to call the base class
    //pass the face cascade xml file which you want to pass as a detector
    CascadeClassifier face_cascade;
    face_cascade.load(cascade_name);
    FacemarkKazemi::Params params;
    params.configfile = configfile_name;
    Ptr<FacemarkKazemi> facemark = FacemarkKazemi::create(params);
    facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);

    std::vector<String> images;
    std::vector<std::vector<Point2f> > facePoints;
    loadTrainingData(imagesList, annotations, images, facePoints, 0.0);
    //gets landmarks and corresponding image names in both the vectors
    vector<Mat> Trainimages;
    std::vector<std::vector<Point2f> > Trainlandmarks;
    //vector to store images
    Mat src;
    for(unsigned long i=0;i<images.size();i++){
        src = imread(images[i]);
        if(src.empty()){
            cout<<images[i]<<endl;
            cerr<<string("Image not found\n.Aborting...")<<endl;
            continue;
        }
        Trainimages.push_back(src);
        Trainlandmarks.push_back(facePoints[i]);
    }
    cout<<"Got data"<<endl;
    facemark->training(Trainimages,Trainlandmarks,configfile_name,scale,modelfile_name);
    cout<<"Training complete"<<endl;
    return 0;
}