File: test_feature2d.jl

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (23 lines) | stat: -rw-r--r-- 685 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# test simple blob detector
img_gray = OpenCV.imread(joinpath(test_dir, "shared", "pic1.png"), OpenCV.IMREAD_GRAYSCALE)

detector = OpenCV.SimpleBlobDetector_create()

# Compare centers of keypoints and se how many of them match,
kps = OpenCV.detect(detector, img_gray)

kps_expect = [OpenCV.Point{Float32}(174.9114f0, 227.75146f0),OpenCV.Point{Float32}(106.925545f0, 179.5765f0)]
for kp in kps
    closest_match = 100000
    for kpe in kps_expect
        dx = kpe.x - kp.pt.x
        dy = kpe.y - kp.pt.y
        if sqrt(dx*dx+dy*dy) < closest_match
            closest_match = sqrt(dx*dx+dy*dy)
        end
    end

    @test closest_match < 10
end

println("feature2d test passed")