1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "perf_precomp.hpp"
namespace opencv_test { namespace {
using namespace cv;
/** Reprojects screen point to camera space given z coord. */
struct Reprojector
{
Reprojector() {}
inline Reprojector(Matx33f intr)
{
fxinv = 1.f / intr(0, 0), fyinv = 1.f / intr(1, 1);
cx = intr(0, 2), cy = intr(1, 2);
}
template<typename T>
inline cv::Point3_<T> operator()(cv::Point3_<T> p) const
{
T x = p.z * (p.x - cx) * fxinv;
T y = p.z * (p.y - cy) * fyinv;
return cv::Point3_<T>(x, y, p.z);
}
float fxinv, fyinv, cx, cy;
};
template<class Scene>
struct RenderInvoker : ParallelLoopBody
{
RenderInvoker(Mat_<float>& _frame, Affine3f _pose,
Reprojector _reproj,
float _depthFactor) : ParallelLoopBody(),
frame(_frame),
pose(_pose),
reproj(_reproj),
depthFactor(_depthFactor)
{ }
virtual void operator ()(const cv::Range& r) const
{
for (int y = r.start; y < r.end; y++)
{
float* frameRow = frame[y];
for (int x = 0; x < frame.cols; x++)
{
float pix = 0;
Point3f orig = pose.translation();
// direction through pixel
Point3f screenVec = reproj(Point3f((float)x, (float)y, 1.f));
float xyt = 1.f / (screenVec.x * screenVec.x +
screenVec.y * screenVec.y + 1.f);
Point3f dir = normalize(Vec3f(pose.rotation() * screenVec));
// screen space axis
dir.y = -dir.y;
const float maxDepth = 20.f;
const float maxSteps = 256;
float t = 0.f;
for (int step = 0; step < maxSteps && t < maxDepth; step++)
{
Point3f p = orig + dir * t;
float d = Scene::map(p);
if (d < 0.000001f)
{
float depth = std::sqrt(t * t * xyt);
pix = depth * depthFactor;
break;
}
t += d;
}
frameRow[x] = pix;
}
}
}
Mat_<float>& frame;
Affine3f pose;
Reprojector reproj;
float depthFactor;
};
struct Scene
{
virtual ~Scene() {}
static Ptr<Scene> create(Size sz, Matx33f _intr, float _depthFactor);
virtual Mat depth(Affine3f pose) = 0;
virtual std::vector<Affine3f> getPoses() = 0;
};
struct SemisphereScene : Scene
{
const int framesPerCycle = 72;
const float nCycles = 1.0f;
const Affine3f startPose = Affine3f(Vec3f(0.f, 0.f, 0.f), Vec3f(1.5f, 0.3f, -1.5f));
Size frameSize;
Matx33f intr;
float depthFactor;
SemisphereScene(Size sz, Matx33f _intr, float _depthFactor) :
frameSize(sz), intr(_intr), depthFactor(_depthFactor)
{ }
static float map(Point3f p)
{
float plane = p.y + 0.5f;
Point3f boxPose = p - Point3f(-0.0f, 0.3f, 0.5f);
float boxSize = 0.5f;
float roundness = 0.08f;
Point3f boxTmp;
boxTmp.x = max(abs(boxPose.x) - boxSize, 0.0f);
boxTmp.y = max(abs(boxPose.y) - boxSize, 0.0f);
boxTmp.z = max(abs(boxPose.z) - boxSize, 0.0f);
float roundBox = (float)cv::norm(boxTmp) - roundness;
Point3f spherePose = p - Point3f(-0.0f, 0.3f, 0.0f);
float sphereRadius = 0.5f;
float sphere = (float)cv::norm(spherePose) - sphereRadius;
float sphereMinusBox = max(sphere, -roundBox);
float subSphereRadius = 0.05f;
Point3f subSpherePose = p - Point3f(0.3f, -0.1f, -0.3f);
float subSphere = (float)cv::norm(subSpherePose) - subSphereRadius;
float res = min({ sphereMinusBox, subSphere, plane });
return res;
}
Mat depth(Affine3f pose) override
{
Mat_<float> frame(frameSize);
Reprojector reproj(intr);
Range range(0, frame.rows);
parallel_for_(range, RenderInvoker<SemisphereScene>(frame, pose, reproj, depthFactor));
return std::move(frame);
}
std::vector<Affine3f> getPoses() override
{
std::vector<Affine3f> poses;
for (int i = 0; i < framesPerCycle * nCycles; i++)
{
float angle = (float)(CV_2PI * i / framesPerCycle);
Affine3f pose;
pose = pose.rotate(startPose.rotation());
pose = pose.rotate(Vec3f(0.f, -1.f, 0.f) * angle);
pose = pose.translate(Vec3f(startPose.translation()[0] * sin(angle),
startPose.translation()[1],
startPose.translation()[2] * cos(angle)));
poses.push_back(pose);
}
return poses;
}
};
Ptr<Scene> Scene::create(Size sz, Matx33f _intr, float _depthFactor)
{
return makePtr<SemisphereScene>(sz, _intr, _depthFactor);
}
class Settings
{
public:
Ptr<kinfu::Params> _params;
Ptr<kinfu::Volume> volume;
Ptr<Scene> scene;
std::vector<Affine3f> poses;
Settings(bool useHashTSDF)
{
if (useHashTSDF)
_params = kinfu::Params::hashTSDFParams(true);
else
_params = kinfu::Params::coarseParams();
volume = kinfu::makeVolume(_params->volumeType, _params->voxelSize, _params->volumePose.matrix,
_params->raycast_step_factor, _params->tsdf_trunc_dist, _params->tsdf_max_weight,
_params->truncateThreshold, _params->volumeDims);
scene = Scene::create(_params->frameSize, _params->intr, _params->depthFactor);
poses = scene->getPoses();
}
};
PERF_TEST(Perf_TSDF, integrate)
{
Settings settings(false);
for (size_t i = 0; i < settings.poses.size(); i++)
{
Matx44f pose = settings.poses[i].matrix;
Mat depth = settings.scene->depth(pose);
startTimer();
settings.volume->integrate(depth, settings._params->depthFactor, pose, settings._params->intr);
stopTimer();
}
SANITY_CHECK_NOTHING();
}
PERF_TEST(Perf_TSDF, raycast)
{
Settings settings(false);
for (size_t i = 0; i < settings.poses.size(); i++)
{
UMat _points, _normals;
Matx44f pose = settings.poses[i].matrix;
Mat depth = settings.scene->depth(pose);
settings.volume->integrate(depth, settings._params->depthFactor, pose, settings._params->intr);
startTimer();
settings.volume->raycast(pose, settings._params->intr, settings._params->frameSize, _points, _normals);
stopTimer();
}
SANITY_CHECK_NOTHING();
}
PERF_TEST(Perf_HashTSDF, integrate)
{
Settings settings(true);
for (size_t i = 0; i < settings.poses.size(); i++)
{
Matx44f pose = settings.poses[i].matrix;
Mat depth = settings.scene->depth(pose);
startTimer();
settings.volume->integrate(depth, settings._params->depthFactor, pose, settings._params->intr);
stopTimer();
}
SANITY_CHECK_NOTHING();
}
PERF_TEST(Perf_HashTSDF, raycast)
{
Settings settings(true);
for (size_t i = 0; i < settings.poses.size(); i++)
{
UMat _points, _normals;
Matx44f pose = settings.poses[i].matrix;
Mat depth = settings.scene->depth(pose);
settings.volume->integrate(depth, settings._params->depthFactor, pose, settings._params->intr);
startTimer();
settings.volume->raycast(pose, settings._params->intr, settings._params->frameSize, _points, _normals);
stopTimer();
}
SANITY_CHECK_NOTHING();
}
}} // namespace
|