1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_KinectFusion.md file found in this module's directory
// This code is also subject to the license terms in the LICENSE_WillowGarage.md file found in this module's directory
#include "test_precomp.hpp"
namespace opencv_test { namespace {
#define SHOW_DEBUG_LOG 0
#define SHOW_DEBUG_IMAGES 0
static
void warpFrame(const Mat& image, const Mat& depth, const Mat& rvec, const Mat& tvec, const Mat& K,
Mat& warpedImage, Mat& warpedDepth)
{
CV_Assert(!image.empty());
CV_Assert(image.type() == CV_8UC1);
CV_Assert(depth.size() == image.size());
CV_Assert(depth.type() == CV_32FC1);
CV_Assert(!rvec.empty());
CV_Assert(rvec.total() == 3);
CV_Assert(rvec.type() == CV_64FC1);
CV_Assert(!tvec.empty());
CV_Assert(tvec.size() == Size(1, 3));
CV_Assert(tvec.type() == CV_64FC1);
warpedImage.create(image.size(), CV_8UC1);
warpedImage = Scalar(0);
warpedDepth.create(image.size(), CV_32FC1);
warpedDepth = Scalar(FLT_MAX);
Mat cloud;
depthTo3d(depth, K, cloud);
Mat Rt = Mat::eye(4, 4, CV_64FC1);
{
Mat R, dst;
Rodrigues(rvec, R);
dst = Rt(Rect(0,0,3,3));
R.copyTo(dst);
dst = Rt(Rect(3,0,1,3));
tvec.copyTo(dst);
}
Mat warpedCloud, warpedImagePoints;
perspectiveTransform(cloud, warpedCloud, Rt);
projectPoints(warpedCloud.reshape(3, 1), Mat(3,1,CV_32FC1, Scalar(0)), Mat(3,1,CV_32FC1, Scalar(0)), K, Mat(1,5,CV_32FC1, Scalar(0)), warpedImagePoints);
warpedImagePoints = warpedImagePoints.reshape(2, cloud.rows);
Rect r(0, 0, image.cols, image.rows);
for(int y = 0; y < cloud.rows; y++)
{
for(int x = 0; x < cloud.cols; x++)
{
Point p = warpedImagePoints.at<Point2f>(y,x);
if(r.contains(p))
{
float curDepth = warpedDepth.at<float>(p.y, p.x);
float newDepth = warpedCloud.at<Point3f>(y, x).z;
if(newDepth < curDepth && newDepth > 0)
{
warpedImage.at<uchar>(p.y, p.x) = image.at<uchar>(y,x);
warpedDepth.at<float>(p.y, p.x) = newDepth;
}
}
}
}
warpedDepth.setTo(std::numeric_limits<float>::quiet_NaN(), warpedDepth > 100);
}
static
void dilateFrame(Mat& image, Mat& depth)
{
CV_Assert(!image.empty());
CV_Assert(image.type() == CV_8UC1);
CV_Assert(!depth.empty());
CV_Assert(depth.type() == CV_32FC1);
CV_Assert(depth.size() == image.size());
Mat mask(image.size(), CV_8UC1, Scalar(255));
for(int y = 0; y < depth.rows; y++)
for(int x = 0; x < depth.cols; x++)
if(cvIsNaN(depth.at<float>(y,x)) || depth.at<float>(y,x) > 10 || depth.at<float>(y,x) <= FLT_EPSILON)
mask.at<uchar>(y,x) = 0;
image.setTo(255, ~mask);
Mat minImage;
erode(image, minImage, Mat());
image.setTo(0, ~mask);
Mat maxImage;
dilate(image, maxImage, Mat());
depth.setTo(FLT_MAX, ~mask);
Mat minDepth;
erode(depth, minDepth, Mat());
depth.setTo(0, ~mask);
Mat maxDepth;
dilate(depth, maxDepth, Mat());
Mat dilatedMask;
dilate(mask, dilatedMask, Mat(), Point(-1,-1), 1);
for(int y = 0; y < depth.rows; y++)
for(int x = 0; x < depth.cols; x++)
if(!mask.at<uchar>(y,x) && dilatedMask.at<uchar>(y,x))
{
image.at<uchar>(y,x) = static_cast<uchar>(0.5f * (static_cast<float>(minImage.at<uchar>(y,x)) +
static_cast<float>(maxImage.at<uchar>(y,x))));
depth.at<float>(y,x) = 0.5f * (minDepth.at<float>(y,x) + maxDepth.at<float>(y,x));
}
}
class CV_OdometryTest : public cvtest::BaseTest
{
public:
CV_OdometryTest(const Ptr<Odometry>& _odometry,
double _maxError1,
double _maxError5,
double _idError = DBL_EPSILON) :
odometry(_odometry),
maxError1(_maxError1),
maxError5(_maxError5),
idError(_idError)
{ }
protected:
bool readData(Mat& image, Mat& depth) const;
static void generateRandomTransformation(Mat& R, Mat& t);
virtual void run(int);
Ptr<Odometry> odometry;
double maxError1;
double maxError5;
double idError;
};
bool CV_OdometryTest::readData(Mat& image, Mat& depth) const
{
std::string imageFilename = ts->get_data_path() + "rgbd/rgb.png";
std::string depthFilename = ts->get_data_path() + "rgbd/depth.png";
image = imread(imageFilename, 0);
depth = imread(depthFilename, -1);
if(image.empty())
{
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return false;
}
if(depth.empty())
{
ts->printf( cvtest::TS::LOG, "Depth %s can not be read.\n", depthFilename.c_str() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
ts->set_gtest_status();
return false;
}
CV_DbgAssert(image.type() == CV_8UC1);
CV_DbgAssert(depth.type() == CV_16UC1);
{
Mat depth_flt;
depth.convertTo(depth_flt, CV_32FC1, 1.f/5000.f);
depth_flt.setTo(std::numeric_limits<float>::quiet_NaN(), depth_flt < FLT_EPSILON);
depth = depth_flt;
}
return true;
}
void CV_OdometryTest::generateRandomTransformation(Mat& rvec, Mat& tvec)
{
const float maxRotation = (float)(3.f / 180.f * CV_PI); //rad
const float maxTranslation = 0.02f; //m
RNG& rng = theRNG();
rvec.create(3, 1, CV_64FC1);
tvec.create(3, 1, CV_64FC1);
randu(rvec, Scalar(-1000), Scalar(1000));
normalize(rvec, rvec, rng.uniform(0.007f, maxRotation));
randu(tvec, Scalar(-1000), Scalar(1000));
normalize(tvec, tvec, rng.uniform(0.008f, maxTranslation));
}
void CV_OdometryTest::run(int)
{
float fx = 525.0f, // default
fy = 525.0f,
cx = 319.5f,
cy = 239.5f;
Mat K = Mat::eye(3,3,CV_32FC1);
{
K.at<float>(0,0) = fx;
K.at<float>(1,1) = fy;
K.at<float>(0,2) = cx;
K.at<float>(1,2) = cy;
}
Mat image, depth;
if(!readData(image, depth))
return;
odometry->setCameraMatrix(K);
Mat calcRt;
// 1. Try to find Rt between the same frame (try masks also).
bool isComputed = odometry->compute(image, depth, Mat(image.size(), CV_8UC1, Scalar(255)),
image, depth, Mat(image.size(), CV_8UC1, Scalar(255)),
calcRt);
if(!isComputed)
{
ts->printf(cvtest::TS::LOG, "Can not find Rt between the same frame");
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
}
double diff = cv::norm(calcRt, Mat::eye(4,4,CV_64FC1));
if(diff > idError)
{
ts->printf(cvtest::TS::LOG, "Incorrect transformation between the same frame (not the identity matrix), diff = %f", diff);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
// 2. Generate random rigid body motion in some ranges several times (iterCount).
// On each iteration an input frame is warped using generated transformation.
// Odometry is run on the following pair: the original frame and the warped one.
// Comparing a computed transformation with an applied one we compute 2 errors:
// better_1time_count - count of poses which error is less than ground truth pose,
// better_5times_count - count of poses which error is 5 times less than ground truth pose.
int iterCount = 100;
int better_1time_count = 0;
int better_5times_count = 0;
for(int iter = 0; iter < iterCount; iter++)
{
Mat rvec, tvec;
generateRandomTransformation(rvec, tvec);
Mat warpedImage, warpedDepth;
warpFrame(image, depth, rvec, tvec, K, warpedImage, warpedDepth);
dilateFrame(warpedImage, warpedDepth); // due to inaccuracy after warping
Mat imageMask(image.size(), CV_8UC1, Scalar(255));
isComputed = odometry->compute(image, depth, imageMask, warpedImage, warpedDepth, imageMask, calcRt);
if(!isComputed)
continue;
Mat calcR = calcRt(Rect(0,0,3,3)), calcRvec;
Rodrigues(calcR, calcRvec);
calcRvec = calcRvec.reshape(rvec.channels(), rvec.rows);
Mat calcTvec = calcRt(Rect(3,0,1,3));
#if SHOW_DEBUG_IMAGES
imshow("image", image);
imshow("warpedImage", warpedImage);
Mat resultImage, resultDepth;
warpFrame(image, depth, calcRvec, calcTvec, K, resultImage, resultDepth);
imshow("resultImage", resultImage);
waitKey();
#endif
// compare rotation
double rdiffnorm = cv::norm(rvec - calcRvec),
rnorm = cv::norm(rvec);
double tdiffnorm = cv::norm(tvec - calcTvec),
tnorm = cv::norm(tvec);
if(rdiffnorm < rnorm && tdiffnorm < tnorm)
better_1time_count++;
if(5. * rdiffnorm < rnorm && 5 * tdiffnorm < tnorm)
better_5times_count++;
#if SHOW_DEBUG_LOG
std::cout << "Iter " << iter << std::endl;
std::cout << "rdiffnorm " << rdiffnorm << "; rnorm " << rnorm << std::endl;
std::cout << "tdiffnorm " << tdiffnorm << "; tnorm " << tnorm << std::endl;
std::cout << "better_1time_count " << better_1time_count << "; better_5time_count " << better_5times_count << std::endl;
#endif
}
if(static_cast<double>(better_1time_count) < maxError1 * static_cast<double>(iterCount))
{
ts->printf(cvtest::TS::LOG, "\nIncorrect count of accurate poses [1st case]: %f / %f", static_cast<double>(better_1time_count), maxError1 * static_cast<double>(iterCount));
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
if(static_cast<double>(better_5times_count) < maxError5 * static_cast<double>(iterCount))
{
ts->printf(cvtest::TS::LOG, "\nIncorrect count of accurate poses [2nd case]: %f / %f", static_cast<double>(better_5times_count), maxError5 * static_cast<double>(iterCount));
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
}
/****************************************************************************************\
* Tests registrations *
\****************************************************************************************/
TEST(RGBD_Odometry_Rgbd, algorithmic)
{
CV_OdometryTest test(cv::rgbd::Odometry::create("RgbdOdometry"), 0.99, 0.89);
test.safe_run();
}
TEST(RGBD_Odometry_ICP, algorithmic)
{
CV_OdometryTest test(cv::rgbd::Odometry::create("ICPOdometry"), 0.99, 0.99);
test.safe_run();
}
TEST(RGBD_Odometry_RgbdICP, algorithmic)
{
CV_OdometryTest test(cv::rgbd::Odometry::create("RgbdICPOdometry"), 0.99, 0.99);
test.safe_run();
}
TEST(RGBD_Odometry_FastICP, algorithmic)
{
CV_OdometryTest test(cv::rgbd::Odometry::create("FastICPOdometry"), 0.99, 0.99, FLT_EPSILON);
test.safe_run();
}
}} // namespace
|