File: detect_er_chars.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (38 lines) | stat: -rw-r--r-- 1,156 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/usr/bin/python

import sys
import os

import cv2 as cv
import numpy as np

print('\ndetect_er_chars.py')
print('       A simple demo script using the Extremal Region Filter algorithm described in:')
print('       Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n')


if (len(sys.argv) < 2):
  print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n')
  quit()

pathname = os.path.dirname(sys.argv[0])

img  = cv.imread(str(sys.argv[1]))
gray = cv.imread(str(sys.argv[1]),0)

erc1 = cv.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml')
er1 = cv.text.createERFilterNM1(erc1)

erc2 = cv.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml')
er2 = cv.text.createERFilterNM2(erc2)

regions = cv.text.detectRegions(gray,er1,er2)

#Visualization
rects = [cv.boundingRect(p.reshape(-1, 1, 2)) for p in regions]
for rect in rects:
  cv.rectangle(img, rect[0:2], (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2)
for rect in rects:
  cv.rectangle(img, rect[0:2], (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1)
cv.imshow("Text detection result", img)
cv.waitKey(0)