File: textdetection.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (58 lines) | stat: -rw-r--r-- 1,982 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/python

import sys
import os

import cv2 as cv
import numpy as np

print('\ntextdetection.py')
print('       A demo script of the Extremal Region Filter algorithm described in:')
print('       Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n')


if (len(sys.argv) < 2):
  print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n')
  quit()

pathname = os.path.dirname(sys.argv[0])


img      = cv.imread(str(sys.argv[1]))
# for visualization
vis      = img.copy()


# Extract channels to be processed individually
channels = cv.text.computeNMChannels(img)
# Append negative channels to detect ER- (bright regions over dark background)
cn = len(channels)-1
for c in range(0,cn):
  channels.append((255-channels[c]))

# Apply the default cascade classifier to each independent channel (could be done in parallel)
print("Extracting Class Specific Extremal Regions from "+str(len(channels))+" channels ...")
print("    (...) this may take a while (...)")
for channel in channels:

  erc1 = cv.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml')
  er1 = cv.text.createERFilterNM1(erc1,16,0.00015,0.13,0.2,True,0.1)

  erc2 = cv.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml')
  er2 = cv.text.createERFilterNM2(erc2,0.5)

  regions = cv.text.detectRegions(channel,er1,er2)

  rects = cv.text.erGrouping(img,channel,[r.tolist() for r in regions])
  #rects = cv.text.erGrouping(img,channel,[x.tolist() for x in regions], cv.text.ERGROUPING_ORIENTATION_ANY,'../../GSoC2014/opencv_contrib/modules/text/samples/trained_classifier_erGrouping.xml',0.5)

  #Visualization
  for r in range(0,np.shape(rects)[0]):
    rect = rects[r]
    cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2)
    cv.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1)


#Visualization
cv.imshow("Text detection result", vis)
cv.waitKey(0)