File: fourier_descriptors_demo.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (169 lines) | stat: -rw-r--r-- 7,036 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import cv2 as cv
import math

class ThParameters:
    def __init__(self):
        self.levelNoise=6
        self.angle=45
        self.scale10=5
        self.origin=10
        self.xg=150
        self.yg=150
        self.update=True

def UpdateShape(x ):
    p.update = True

def union(a,b):
  x = min(a[0], b[0])
  y = min(a[1], b[1])
  w = max(a[0]+a[2], b[0]+b[2]) - x
  h = max(a[1]+a[3], b[1]+b[3]) - y
  return (x, y, w, h)

def intersection(a,b):
  x = max(a[0], b[0])
  y = max(a[1], b[1])
  w = min(a[0]+a[2], b[0]+b[2]) - x
  h = min(a[1]+a[3], b[1]+b[3]) - y
  if w<0 or h<0: return () # or (0,0,0,0) ?
  return (x, y, w, h)

def NoisyPolygon(pRef,n):
#    vector<Point> c
    p = pRef;
#    vector<vector<Point> > contour;
    p = p+n*np.random.random_sample((p.shape[0],p.shape[1]))-n/2.0
    if (n==0):
        return p
    c = np.empty(shape=[0, 2])
    minX = p[0][0]
    maxX = p[0][0]
    minY = p[0][1]
    maxY = p[0][1]
    for i in range( 0,p.shape[0]):
        next = i + 1;
        if (next == p.shape[0]):
            next = 0;
        u = p[next] - p[i]
        d = int(cv.norm(u))
        a = np.arctan2(u[1], u[0])
        step = 1
        if (n != 0):
            step = d // n
        for j in range( 1,int(d),int(max(step, 1))):
            while  True:
                pAct = (u*j) / (d)
                r = n*np.random.random_sample()
                theta = a + 2*math.pi*np.random.random_sample()
#                pNew = Point(Point2d(r*cos(theta) + pAct.x + p[i].x, r*sin(theta) + pAct.y + p[i].y));
                pNew = np.array([(r*np.cos(theta) + pAct[0] + p[i][0], r*np.sin(theta) + pAct[1] + p[i][1])])
                if (pNew[0][0]>=0 and pNew[0][1]>=0):
                    break
            if (pNew[0][0]<minX):
                minX = pNew[0][0]
            if (pNew[0][0]>maxX):
                maxX = pNew[0][0]
            if (pNew[0][1]<minY):
                minY = pNew[0][1]
            if (pNew[0][1]>maxY):
                maxY = pNew[0][1]
            c = np.append(c,pNew,axis = 0)
    return c

#static vector<Point> NoisyPolygon(vector<Point> pRef, double n);
#static void UpdateShape(int , void *r);
#static void AddSlider(String sliderName, String windowName, int minSlider, int maxSlider, int valDefault, int *valSlider, void(*f)(int, void *), void *r);
def AddSlider(sliderName,windowName,minSlider,maxSlider,valDefault, update):
    cv.createTrackbar(sliderName, windowName, valDefault,maxSlider-minSlider+1, update)
    cv.setTrackbarMin(sliderName, windowName, minSlider)
    cv.setTrackbarMax(sliderName, windowName, maxSlider)
    cv.setTrackbarPos(sliderName, windowName, valDefault)

#    vector<Point> ctrRef;
#    vector<Point> ctrRotate, ctrNoisy, ctrNoisyRotate, ctrNoisyRotateShift;
#    // build a shape with 5 vertex
ctrRef = np.array([(250,250),(400, 250),(400, 300),(250, 300),(180, 270)])
cg = np.mean(ctrRef,axis=0)
p=ThParameters()
cv.namedWindow("FD Curve matching");
# A rotation with center at (150,150) of angle 45 degrees and a scaling of 5/10
AddSlider("Noise", "FD Curve matching", 0, 20, p.levelNoise,  UpdateShape)
AddSlider("Angle", "FD Curve matching", 0, 359, p.angle,  UpdateShape)
AddSlider("Scale", "FD Curve matching", 5, 100, p.scale10, UpdateShape)
AddSlider("Origin", "FD Curve matching", 0, 100, p.origin, UpdateShape)
AddSlider("Xg", "FD Curve matching", 150, 450, p.xg, UpdateShape)
AddSlider("Yg", "FD Curve matching", 150, 450, p.yg, UpdateShape)
code = 0
img = np.zeros((300,512,3), np.uint8)
print ("******************** PRESS g TO MATCH CURVES *************\n")

while (code!=27):
    code = cv.waitKey(60)
    if p.update:
        p.levelNoise=cv.getTrackbarPos('Noise','FD Curve matching')
        p.angle=cv.getTrackbarPos('Angle','FD Curve matching')
        p.scale10=cv.getTrackbarPos('Scale','FD Curve matching')
        p.origin=cv.getTrackbarPos('Origin','FD Curve matching')
        p.xg=cv.getTrackbarPos('Xg','FD Curve matching')
        p.yg=cv.getTrackbarPos('Yg','FD Curve matching')

        r = cv.getRotationMatrix2D((p.xg, p.yg), angle=p.angle, scale=10.0/ p.scale10);
        ctrNoisy= NoisyPolygon(ctrRef,p.levelNoise)
        ctrNoisy1 = np.reshape(ctrNoisy,(ctrNoisy.shape[0],1,2))
        ctrNoisyRotate = cv.transform(ctrNoisy1,r)
        ctrNoisyRotateShift = np.empty([ctrNoisyRotate.shape[0],1,2],dtype=np.int32)
        for  i in range(0,ctrNoisy.shape[0]):
            k=(i+(p.origin*ctrNoisy.shape[0])//100)% ctrNoisyRotate.shape[0]
            ctrNoisyRotateShift[i] = ctrNoisyRotate[k]
#       To draw contour using drawcontours
        cc= np.reshape(ctrNoisyRotateShift,[ctrNoisyRotateShift.shape[0],2])
        c = [ ctrRef,cc]
        p.update = False;
        rglobal =(0,0,0,0)
        for i in range(0,2):
            r = cv.boundingRect(c[i])
            rglobal = union(rglobal,r)
        r = list(rglobal)
        r[2] = r[2]+10
        r[3] = r[3]+10
        rglobal = tuple(r)
        img = np.zeros((2 * rglobal[3], 2 * rglobal[2], 3), np.uint8)
        cv.drawContours(img, c, 0, (255,0,0),1);
        cv.drawContours(img, c, 1, (0, 255, 0),1);
        cv.circle(img, tuple(c[0][0]), 5, (255, 0, 0),3);
        cv.circle(img, tuple(c[1][0]), 5, (0, 255, 0),3);
        cv.imshow("FD Curve matching", img);
    if code == ord('d') :
        cv.destroyWindow("FD Curve matching");
        cv.namedWindow("FD Curve matching");
# A rotation with center at (150,150) of angle 45 degrees and a scaling of 5/10
        AddSlider("Noise", "FD Curve matching", 0, 20, p.levelNoise,  UpdateShape)
        AddSlider("Angle", "FD Curve matching", 0, 359, p.angle,  UpdateShape)
        AddSlider("Scale", "FD Curve matching", 5, 100, p.scale10,  UpdateShape)
        AddSlider("Origin%%", "FD Curve matching", 0, 100, p.origin, UpdateShape)
        AddSlider("Xg", "FD Curve matching", 150, 450, p.xg,  UpdateShape)
        AddSlider("Yg", "FD Curve matching", 150, 450, p.yg,  UpdateShape)
    if  code == ord('g'):
        fit = cv.ximgproc.createContourFitting(1024,16);
# sampling contour we want 256 points
        cn= np.reshape(ctrRef,[ctrRef.shape[0],1,2])

        ctrRef2d = cv.ximgproc.contourSampling(cn,  256)
        ctrRot2d = cv.ximgproc.contourSampling(ctrNoisyRotateShift,  256)
        fit.setFDSize(16)
        c1 = ctrRef2d
        c2 = ctrRot2d
        alphaPhiST, dist	 = fit.estimateTransformation(ctrRot2d, ctrRef2d)
        print( "Transform *********\n Origin = ", 1-alphaPhiST[0,0] ," expected ", p.origin / 100. ,"\n")
        print( "Angle = ", alphaPhiST[0,1] * 180 / math.pi ," expected " , p.angle,"\n")
        print( "Scale = " ,alphaPhiST[0,2] ," expected " , p.scale10 / 10.0 , "\n")
        dst = cv.ximgproc.transformFD(ctrRot2d, alphaPhiST,cn, False);
        ctmp= np.reshape(dst,[dst.shape[0],2])
        cdst=ctmp.astype(int)

        c = [ ctrRef,cc,cdst]
        cv.drawContours(img, c, 2, (0,0,255),1);
        cv.circle(img, (int(c[2][0][0]),int(c[2][0][1])), 5, (0, 0, 255),5);
        cv.imshow("FD Curve matching", img);