File: test_adaptive_manifold.cpp

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (179 lines) | stat: -rw-r--r-- 5,536 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"

namespace opencv_test {
Ptr<AdaptiveManifoldFilter> createAMFilterRefImpl(double sigma_s, double sigma_r, bool adjust_outliers = false);
namespace {

#ifndef SQR
#define SQR(x) ((x)*(x))
#endif

static string getOpenCVExtraDir()
{
    return cvtest::TS::ptr()->get_data_path();
}

static void checkSimilarity(InputArray res, InputArray ref, double maxNormInf = 1, double maxNormL2 = 1.0 / 64)
{
    double normInf = cvtest::norm(res, ref, NORM_INF);
    double normL2 = cvtest::norm(res, ref, NORM_L2) / res.total();

    if (maxNormInf >= 0) { EXPECT_LE(normInf, maxNormInf); }
    if (maxNormL2 >= 0) { EXPECT_LE(normL2, maxNormL2); }
}

TEST(AdaptiveManifoldTest, SplatSurfaceAccuracy)
{
    RNG rnd(0);

    for (int i = 0; i < 5; i++)
    {
        Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));

        int guideCn = rnd.uniform(1, 8);
        Mat guide(sz, CV_MAKE_TYPE(CV_32F, guideCn));
        randu(guide, 0, 1);

        Scalar surfaceValue;
        int srcCn = rnd.uniform(1, 4);
        rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
        Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);

        double sigma_s = rnd.uniform(1.0, 50.0);
        double sigma_r = rnd.uniform(0.1, 0.9);

        Mat res;
        amFilter(guide, src, res, sigma_s, sigma_r, false);

        double normInf = cvtest::norm(src, res, NORM_INF);
        EXPECT_EQ(normInf, 0);
    }
}

TEST(AdaptiveManifoldTest, AuthorsReferenceAccuracy)
{
    String srcImgPath = "cv/edgefilter/kodim23.png";

    String refPaths[] =
    {
        "cv/edgefilter/amf/kodim23_amf_ss5_sr0.3_ref.png",
        "cv/edgefilter/amf/kodim23_amf_ss30_sr0.1_ref.png",
        "cv/edgefilter/amf/kodim23_amf_ss50_sr0.3_ref.png"
    };

    pair<double, double> refParams[] =
    {
        make_pair(5.0, 0.3),
        make_pair(30.0, 0.1),
        make_pair(50.0, 0.3)
    };

    String refOutliersPaths[] =
    {
        "cv/edgefilter/amf/kodim23_amf_ss5_sr0.1_outliers_ref.png",
        "cv/edgefilter/amf/kodim23_amf_ss15_sr0.3_outliers_ref.png",
        "cv/edgefilter/amf/kodim23_amf_ss50_sr0.5_outliers_ref.png"
    };

    pair<double, double> refOutliersParams[] =
    {
        make_pair(5.0, 0.1),
        make_pair(15.0, 0.3),
        make_pair(50.0, 0.5),
    };

    Mat srcImg = imread(getOpenCVExtraDir() + srcImgPath);
    ASSERT_TRUE(!srcImg.empty());

    for (int i = 0; i < 3; i++)
    {
        Mat refRes = imread(getOpenCVExtraDir() + refPaths[i]);
        double sigma_s = refParams[i].first;
        double sigma_r = refParams[i].second;
        ASSERT_TRUE(!refRes.empty());

        Mat res;
        Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, false);
        amf->setUseRNG(false);
        amf->filter(srcImg, res, srcImg);
        amf->collectGarbage();

        checkSimilarity(res, refRes);
    }

    for (int i = 0; i < 3; i++)
    {
        Mat refRes = imread(getOpenCVExtraDir() + refOutliersPaths[i]);
        double sigma_s = refOutliersParams[i].first;
        double sigma_r = refOutliersParams[i].second;
        ASSERT_TRUE(!refRes.empty());

        Mat res;
        Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, true);
        amf->setUseRNG(false);
        amf->filter(srcImg, res, srcImg);
        amf->collectGarbage();

        checkSimilarity(res, refRes);
    }
}

typedef tuple<string, string> AMRefTestParams;
typedef TestWithParam<AMRefTestParams> AdaptiveManifoldRefImplTest;

TEST_P(AdaptiveManifoldRefImplTest, RefImplAccuracy)
{
    AMRefTestParams params = GetParam();

    string guideFileName = get<0>(params);
    string srcFileName = get<1>(params);

    Mat guide = imread(getOpenCVExtraDir() + guideFileName);
    Mat src = imread(getOpenCVExtraDir() + srcFileName);
    ASSERT_TRUE(!guide.empty() && !src.empty());

    int seed = 10 * (int)guideFileName.length() + (int)srcFileName.length();
    RNG rnd(seed);

    //inconsistent downsample/upsample operations in reference implementation
    Size dstSize((guide.cols + 15) & ~15, (guide.rows + 15) & ~15);

    resize(guide, guide, dstSize, 0, 0, INTER_LINEAR_EXACT);
    resize(src, src, dstSize, 0, 0, INTER_LINEAR_EXACT);

    int nThreads = cv::getNumThreads();
    if (nThreads == 1)
        throw SkipTestException("Single thread environment");
    for (int iter = 0; iter < 4; iter++)
    {
        double sigma_s = rnd.uniform(1.0, 50.0);
        double sigma_r = rnd.uniform(0.1, 0.9);
        bool adjust_outliers = (iter % 2 == 0);

        cv::setNumThreads(nThreads);
        Mat res;
        amFilter(guide, src, res, sigma_s, sigma_r, adjust_outliers);

        cv::setNumThreads(1);
        Mat resRef;
        Ptr<AdaptiveManifoldFilter> amf = createAMFilterRefImpl(sigma_s, sigma_r, adjust_outliers);
        amf->filter(src, resRef, guide);

        //results of reference implementation may differ on small sigma_s into small isolated region
        //due to low single-precision floating point numbers accuracy
        //therefore the threshold of inf norm was increased
        checkSimilarity(res, resRef, 25);
    }
}

INSTANTIATE_TEST_CASE_P(TypicalSet, AdaptiveManifoldRefImplTest,
    Combine(
    Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png"),
    Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png")
));


}} // namespace