1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test {
Ptr<AdaptiveManifoldFilter> createAMFilterRefImpl(double sigma_s, double sigma_r, bool adjust_outliers = false);
namespace {
#ifndef SQR
#define SQR(x) ((x)*(x))
#endif
static string getOpenCVExtraDir()
{
return cvtest::TS::ptr()->get_data_path();
}
static void checkSimilarity(InputArray res, InputArray ref, double maxNormInf = 1, double maxNormL2 = 1.0 / 64)
{
double normInf = cvtest::norm(res, ref, NORM_INF);
double normL2 = cvtest::norm(res, ref, NORM_L2) / res.total();
if (maxNormInf >= 0) { EXPECT_LE(normInf, maxNormInf); }
if (maxNormL2 >= 0) { EXPECT_LE(normL2, maxNormL2); }
}
TEST(AdaptiveManifoldTest, SplatSurfaceAccuracy)
{
RNG rnd(0);
for (int i = 0; i < 5; i++)
{
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));
int guideCn = rnd.uniform(1, 8);
Mat guide(sz, CV_MAKE_TYPE(CV_32F, guideCn));
randu(guide, 0, 1);
Scalar surfaceValue;
int srcCn = rnd.uniform(1, 4);
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
double sigma_s = rnd.uniform(1.0, 50.0);
double sigma_r = rnd.uniform(0.1, 0.9);
Mat res;
amFilter(guide, src, res, sigma_s, sigma_r, false);
double normInf = cvtest::norm(src, res, NORM_INF);
EXPECT_EQ(normInf, 0);
}
}
TEST(AdaptiveManifoldTest, AuthorsReferenceAccuracy)
{
String srcImgPath = "cv/edgefilter/kodim23.png";
String refPaths[] =
{
"cv/edgefilter/amf/kodim23_amf_ss5_sr0.3_ref.png",
"cv/edgefilter/amf/kodim23_amf_ss30_sr0.1_ref.png",
"cv/edgefilter/amf/kodim23_amf_ss50_sr0.3_ref.png"
};
pair<double, double> refParams[] =
{
make_pair(5.0, 0.3),
make_pair(30.0, 0.1),
make_pair(50.0, 0.3)
};
String refOutliersPaths[] =
{
"cv/edgefilter/amf/kodim23_amf_ss5_sr0.1_outliers_ref.png",
"cv/edgefilter/amf/kodim23_amf_ss15_sr0.3_outliers_ref.png",
"cv/edgefilter/amf/kodim23_amf_ss50_sr0.5_outliers_ref.png"
};
pair<double, double> refOutliersParams[] =
{
make_pair(5.0, 0.1),
make_pair(15.0, 0.3),
make_pair(50.0, 0.5),
};
Mat srcImg = imread(getOpenCVExtraDir() + srcImgPath);
ASSERT_TRUE(!srcImg.empty());
for (int i = 0; i < 3; i++)
{
Mat refRes = imread(getOpenCVExtraDir() + refPaths[i]);
double sigma_s = refParams[i].first;
double sigma_r = refParams[i].second;
ASSERT_TRUE(!refRes.empty());
Mat res;
Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, false);
amf->setUseRNG(false);
amf->filter(srcImg, res, srcImg);
amf->collectGarbage();
checkSimilarity(res, refRes);
}
for (int i = 0; i < 3; i++)
{
Mat refRes = imread(getOpenCVExtraDir() + refOutliersPaths[i]);
double sigma_s = refOutliersParams[i].first;
double sigma_r = refOutliersParams[i].second;
ASSERT_TRUE(!refRes.empty());
Mat res;
Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, true);
amf->setUseRNG(false);
amf->filter(srcImg, res, srcImg);
amf->collectGarbage();
checkSimilarity(res, refRes);
}
}
typedef tuple<string, string> AMRefTestParams;
typedef TestWithParam<AMRefTestParams> AdaptiveManifoldRefImplTest;
TEST_P(AdaptiveManifoldRefImplTest, RefImplAccuracy)
{
AMRefTestParams params = GetParam();
string guideFileName = get<0>(params);
string srcFileName = get<1>(params);
Mat guide = imread(getOpenCVExtraDir() + guideFileName);
Mat src = imread(getOpenCVExtraDir() + srcFileName);
ASSERT_TRUE(!guide.empty() && !src.empty());
int seed = 10 * (int)guideFileName.length() + (int)srcFileName.length();
RNG rnd(seed);
//inconsistent downsample/upsample operations in reference implementation
Size dstSize((guide.cols + 15) & ~15, (guide.rows + 15) & ~15);
resize(guide, guide, dstSize, 0, 0, INTER_LINEAR_EXACT);
resize(src, src, dstSize, 0, 0, INTER_LINEAR_EXACT);
int nThreads = cv::getNumThreads();
if (nThreads == 1)
throw SkipTestException("Single thread environment");
for (int iter = 0; iter < 4; iter++)
{
double sigma_s = rnd.uniform(1.0, 50.0);
double sigma_r = rnd.uniform(0.1, 0.9);
bool adjust_outliers = (iter % 2 == 0);
cv::setNumThreads(nThreads);
Mat res;
amFilter(guide, src, res, sigma_s, sigma_r, adjust_outliers);
cv::setNumThreads(1);
Mat resRef;
Ptr<AdaptiveManifoldFilter> amf = createAMFilterRefImpl(sigma_s, sigma_r, adjust_outliers);
amf->filter(src, resRef, guide);
//results of reference implementation may differ on small sigma_s into small isolated region
//due to low single-precision floating point numbers accuracy
//therefore the threshold of inf norm was increased
checkSimilarity(res, resRef, 25);
}
}
INSTANTIATE_TEST_CASE_P(TypicalSet, AdaptiveManifoldRefImplTest,
Combine(
Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png"),
Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png")
));
}} // namespace
|