1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "opencv2/ximgproc/sparse_match_interpolator.hpp"
namespace opencv_test { namespace {
static string getDataDir()
{
return cvtest::TS::ptr()->get_data_path();
}
const float FLOW_TAG_FLOAT = 202021.25f;
Mat readOpticalFlow( const String& path )
{
// CV_Assert(sizeof(float) == 4);
//FIXME: ensure right sizes of int and float - here and in writeOpticalFlow()
Mat_<Point2f> flow;
std::ifstream file(path.c_str(), std::ios_base::binary);
if ( !file.good() )
return std::move(flow); // no file - return empty matrix
float tag;
file.read((char*) &tag, sizeof(float));
if ( tag != FLOW_TAG_FLOAT )
return std::move(flow);
int width, height;
file.read((char*) &width, 4);
file.read((char*) &height, 4);
flow.create(height, width);
for ( int i = 0; i < flow.rows; ++i )
{
for ( int j = 0; j < flow.cols; ++j )
{
Point2f u;
file.read((char*) &u.x, sizeof(float));
file.read((char*) &u.y, sizeof(float));
if ( !file.good() )
{
flow.release();
return std::move(flow);
}
flow(i, j) = u;
}
}
file.close();
return std::move(flow);
}
CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3)
typedef tuple<Size, GuideTypes> InterpolatorParams;
typedef TestWithParam<InterpolatorParams> InterpolatorTest;
TEST(InterpolatorTest, ReferenceAccuracy)
{
double MAX_DIF = 1.0;
double MAX_MEAN_DIF = 1.0 / 256.0;
string dir = getDataDir() + "cv/sparse_match_interpolator";
Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png",IMREAD_COLOR);
ASSERT_FALSE(src.empty());
Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo");
ASSERT_FALSE(ref_flow.empty());
std::ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str());
float from_x,from_y,to_x,to_y;
vector<Point2f> from_points;
vector<Point2f> to_points;
while(file >> from_x >> from_y >> to_x >> to_y)
{
from_points.push_back(Point2f(from_x,from_y));
to_points.push_back(Point2f(to_x,to_y));
}
Mat res_flow;
Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
interpolator->setK(128);
interpolator->setSigma(0.05f);
interpolator->setUsePostProcessing(true);
interpolator->setFGSLambda(500.0f);
interpolator->setFGSSigma(1.5f);
interpolator->interpolate(src,from_points,Mat(),to_points,res_flow);
EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total());
}
TEST(InterpolatorTest, RICReferenceAccuracy)
{
double MAX_DIF = 6.0;
double MAX_MEAN_DIF = 60.0 / 256.0;
string dir = getDataDir() + "cv/sparse_match_interpolator";
Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png", IMREAD_COLOR);
ASSERT_FALSE(src.empty());
Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo");
ASSERT_FALSE(ref_flow.empty());
Mat src1 = imread(getDataDir() + "cv/optflow/RubberWhale2.png", IMREAD_COLOR);
ASSERT_FALSE(src.empty());
std::ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str());
float from_x, from_y, to_x, to_y;
vector<Point2f> from_points;
vector<Point2f> to_points;
while (file >> from_x >> from_y >> to_x >> to_y)
{
from_points.push_back(Point2f(from_x, from_y));
to_points.push_back(Point2f(to_x, to_y));
}
Mat res_flow;
Ptr<RICInterpolator> interpolator = createRICInterpolator();
interpolator->setK(32);
interpolator->setSuperpixelSize(15);
interpolator->setSuperpixelNNCnt(150);
interpolator->setSuperpixelRuler(15.f);
interpolator->setSuperpixelMode(ximgproc::SLIC);
interpolator->setAlpha(0.7f);
interpolator->setModelIter(4);
interpolator->setRefineModels(true);
interpolator->setMaxFlow(250.f);
interpolator->setUseVariationalRefinement(true);
interpolator->setUseGlobalSmootherFilter(true);
interpolator->setFGSLambda(500.f);
interpolator->setFGSSigma(1.5f);
interpolator->interpolate(src, from_points, src1, to_points, res_flow);
EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1), MAX_MEAN_DIF*res_flow.total());
}
TEST_P(InterpolatorTest, MultiThreadReproducibility)
{
if (cv::getNumberOfCPUs() == 1)
return;
double MAX_DIF = 1.0;
double MAX_MEAN_DIF = 1.0 / 256.0;
int loopsCount = 2;
RNG rng(0);
InterpolatorParams params = GetParam();
Size size = get<0>(params);
int guideType = get<1>(params);
Mat from(size, guideType);
randu(from, 0, 255);
int num_matches = rng.uniform(5,SHRT_MAX-1);
vector<Point2f> from_points;
vector<Point2f> to_points;
for(int i=0;i<num_matches;i++)
{
from_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
to_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
}
int nThreads = cv::getNumThreads();
if (nThreads == 1)
throw SkipTestException("Single thread environment");
for (int iter = 0; iter <= loopsCount; iter++)
{
int K = rng.uniform(4,512);
float sigma = rng.uniform(0.01f,0.5f);
float FGSlambda = rng.uniform(100.0f, 10000.0f);
float FGSsigma = rng.uniform(0.5f, 100.0f);
Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
interpolator->setK(K);
interpolator->setSigma(sigma);
interpolator->setUsePostProcessing(true);
interpolator->setFGSLambda(FGSlambda);
interpolator->setFGSSigma(FGSsigma);
cv::setNumThreads(nThreads);
Mat resMultiThread;
interpolator->interpolate(from,from_points,Mat(),to_points,resMultiThread);
cv::setNumThreads(1);
Mat resSingleThread;
interpolator->interpolate(from,from_points,Mat(),to_points,resSingleThread);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1) , MAX_MEAN_DIF*resMultiThread.total());
}
}
INSTANTIATE_TEST_CASE_P(FullSet,InterpolatorTest, Combine(Values(szODD,szVGA), GuideTypes::all()));
}} // namespace
|