File: test_sparse_match_interpolator.cpp

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (205 lines) | stat: -rw-r--r-- 6,706 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "opencv2/ximgproc/sparse_match_interpolator.hpp"

namespace opencv_test { namespace {

static string getDataDir()
{
    return cvtest::TS::ptr()->get_data_path();
}

const float FLOW_TAG_FLOAT = 202021.25f;
Mat readOpticalFlow( const String& path )
{
//    CV_Assert(sizeof(float) == 4);
    //FIXME: ensure right sizes of int and float - here and in writeOpticalFlow()

    Mat_<Point2f> flow;
    std::ifstream file(path.c_str(), std::ios_base::binary);
    if ( !file.good() )
        return std::move(flow); // no file - return empty matrix

    float tag;
    file.read((char*) &tag, sizeof(float));
    if ( tag != FLOW_TAG_FLOAT )
        return std::move(flow);

    int width, height;

    file.read((char*) &width, 4);
    file.read((char*) &height, 4);

    flow.create(height, width);

    for ( int i = 0; i < flow.rows; ++i )
    {
        for ( int j = 0; j < flow.cols; ++j )
        {
            Point2f u;
            file.read((char*) &u.x, sizeof(float));
            file.read((char*) &u.y, sizeof(float));
            if ( !file.good() )
            {
                flow.release();
                return std::move(flow);
            }

            flow(i, j) = u;
        }
    }
    file.close();
    return std::move(flow);
}

CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3)
typedef tuple<Size, GuideTypes> InterpolatorParams;
typedef TestWithParam<InterpolatorParams> InterpolatorTest;

TEST(InterpolatorTest, ReferenceAccuracy)
{
    double MAX_DIF = 1.0;
    double MAX_MEAN_DIF = 1.0 / 256.0;
    string dir = getDataDir() + "cv/sparse_match_interpolator";

    Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png",IMREAD_COLOR);
    ASSERT_FALSE(src.empty());

    Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo");
    ASSERT_FALSE(ref_flow.empty());

    std::ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str());
    float from_x,from_y,to_x,to_y;
    vector<Point2f> from_points;
    vector<Point2f> to_points;

    while(file >> from_x >> from_y >> to_x >> to_y)
    {
        from_points.push_back(Point2f(from_x,from_y));
        to_points.push_back(Point2f(to_x,to_y));
    }

    Mat res_flow;

    Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
    interpolator->setK(128);
    interpolator->setSigma(0.05f);
    interpolator->setUsePostProcessing(true);
    interpolator->setFGSLambda(500.0f);
    interpolator->setFGSSigma(1.5f);
    interpolator->interpolate(src,from_points,Mat(),to_points,res_flow);

    EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
    EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total());
}

TEST(InterpolatorTest, RICReferenceAccuracy)
{
    double MAX_DIF = 6.0;
    double MAX_MEAN_DIF = 60.0 / 256.0;
    string dir = getDataDir() + "cv/sparse_match_interpolator";

    Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png", IMREAD_COLOR);
    ASSERT_FALSE(src.empty());

    Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo");
    ASSERT_FALSE(ref_flow.empty());

    Mat src1 = imread(getDataDir() + "cv/optflow/RubberWhale2.png", IMREAD_COLOR);
    ASSERT_FALSE(src.empty());

    std::ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str());
    float from_x, from_y, to_x, to_y;
    vector<Point2f> from_points;
    vector<Point2f> to_points;

    while (file >> from_x >> from_y >> to_x >> to_y)
    {
        from_points.push_back(Point2f(from_x, from_y));
        to_points.push_back(Point2f(to_x, to_y));
    }

    Mat res_flow;

    Ptr<RICInterpolator> interpolator = createRICInterpolator();
    interpolator->setK(32);
    interpolator->setSuperpixelSize(15);
    interpolator->setSuperpixelNNCnt(150);
    interpolator->setSuperpixelRuler(15.f);
    interpolator->setSuperpixelMode(ximgproc::SLIC);
    interpolator->setAlpha(0.7f);
    interpolator->setModelIter(4);
    interpolator->setRefineModels(true);
    interpolator->setMaxFlow(250.f);
    interpolator->setUseVariationalRefinement(true);
    interpolator->setUseGlobalSmootherFilter(true);
    interpolator->setFGSLambda(500.f);
    interpolator->setFGSSigma(1.5f);
    interpolator->interpolate(src, from_points, src1, to_points, res_flow);

    EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
    EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1), MAX_MEAN_DIF*res_flow.total());
}

TEST_P(InterpolatorTest, MultiThreadReproducibility)
{
    if (cv::getNumberOfCPUs() == 1)
        return;

    double MAX_DIF = 1.0;
    double MAX_MEAN_DIF = 1.0 / 256.0;
    int loopsCount = 2;
    RNG rng(0);

    InterpolatorParams params = GetParam();
    Size size       = get<0>(params);
    int guideType   = get<1>(params);

    Mat from(size, guideType);
    randu(from, 0, 255);

    int num_matches = rng.uniform(5,SHRT_MAX-1);
    vector<Point2f> from_points;
    vector<Point2f> to_points;

    for(int i=0;i<num_matches;i++)
    {
        from_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
        to_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
    }

    int nThreads = cv::getNumThreads();
    if (nThreads == 1)
        throw SkipTestException("Single thread environment");
    for (int iter = 0; iter <= loopsCount; iter++)
    {
        int K = rng.uniform(4,512);
        float sigma = rng.uniform(0.01f,0.5f);
        float FGSlambda = rng.uniform(100.0f, 10000.0f);
        float FGSsigma  = rng.uniform(0.5f, 100.0f);

        Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
        interpolator->setK(K);
        interpolator->setSigma(sigma);
        interpolator->setUsePostProcessing(true);
        interpolator->setFGSLambda(FGSlambda);
        interpolator->setFGSSigma(FGSsigma);

        cv::setNumThreads(nThreads);
        Mat resMultiThread;
        interpolator->interpolate(from,from_points,Mat(),to_points,resMultiThread);

        cv::setNumThreads(1);
        Mat resSingleThread;
        interpolator->interpolate(from,from_points,Mat(),to_points,resSingleThread);

        EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
        EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1) , MAX_MEAN_DIF*resMultiThread.total());
    }
}
INSTANTIATE_TEST_CASE_P(FullSet,InterpolatorTest, Combine(Values(szODD,szVGA), GuideTypes::all()));


}} // namespace