1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
TEST(ximgproc_StructuredEdgeDetection, regression)
{
cv::String subfolder = "cv/ximgproc/";
cv::String dir = cvtest::TS::ptr()->get_data_path() + subfolder;
int nTests = 12;
float threshold = 0.01f;
cv::String modelName = dir + "model.yml.gz";
cv::Ptr<cv::ximgproc::StructuredEdgeDetection> pDollar =
cv::ximgproc::createStructuredEdgeDetection(modelName);
for (int i = 0; i < nTests; ++i)
{
cv::String srcName = dir + cv::format( "sources/%02d.png", i + 1);
cv::Mat src = cv::imread( srcName, 1 );
ASSERT_TRUE(!src.empty());
cv::String previousResultName = dir + cv::format( "results/%02d.png", i + 1 );
cv::Mat previousResult = cv::imread( previousResultName, 0 );
previousResult.convertTo( previousResult, CV_32F, 1/255.0 );
src.convertTo( src, CV_32F, 1/255.0 );
cv::Mat currentResult( src.size(), src.type() );
pDollar->detectEdges( src, currentResult );
cv::Mat sqrError = ( currentResult - previousResult )
.mul( currentResult - previousResult );
cv::Scalar mse = cv::sum(sqrError) / cv::Scalar::all( double( sqrError.total() ) );
EXPECT_LE( mse[0], threshold );
}
}
}} // namespace
|