File: prediction.markdown

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (88 lines) | stat: -rw-r--r-- 1,819 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
Structured forests for fast edge detection {#tutorial_ximgproc_prediction}
==========================================

Introduction
------------

In this tutorial you will learn how to use structured forests for the purpose of edge detection in
an image.

Examples
--------

![image](images/01.jpg)

![image](images/02.jpg)

![image](images/03.jpg)

![image](images/04.jpg)

![image](images/05.jpg)

![image](images/06.jpg)

![image](images/07.jpg)

![image](images/08.jpg)

![image](images/09.jpg)

![image](images/10.jpg)

![image](images/11.jpg)

![image](images/12.jpg)

@note binarization techniques like Canny edge detector are applicable to edges produced by both
algorithms (Sobel and StructuredEdgeDetection::detectEdges).

Source Code
-----------

@includelineno ximgproc/samples/structured_edge_detection.cpp

Explanation
-----------

-#  **Load source color image**
    @code{.cpp}
    cv::Mat image = cv::imread(inFilename, 1);
    if ( image.empty() )
    {
        printf("Cannot read image file: %s\n", inFilename.c_str());
        return -1;
    }
    @endcode

-#  **Convert source image to [0;1] range**
    @code{.cpp}
    image.convertTo(image, cv::DataType<float>::type, 1/255.0);
    @endcode

-#  **Run main algorithm**
    @code{.cpp}
    cv::Mat edges(image.size(), image.type());

    cv::Ptr<StructuredEdgeDetection> pDollar =
        cv::createStructuredEdgeDetection(modelFilename);
    pDollar->detectEdges(image, edges);
    @endcode

-#  **Show results**
    @code{.cpp}
    if ( outFilename == "" )
    {
        cv::namedWindow("edges", 1);
        cv::imshow("edges", edges);

        cv::waitKey(0);
    }
    else
        cv::imwrite(outFilename, 255*edges);
    @endcode

Literature
----------

For more information, refer to the following papers : @cite Dollar2013 @cite Lim2013