1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
class CV_UndistortTest : public cvtest::BaseTest
{
public:
CV_UndistortTest();
~CV_UndistortTest();
protected:
void run(int);
private:
void generate3DPointCloud(vector<Point3f>& points, Point3f pmin = Point3f(-1,
-1, 5), Point3f pmax = Point3f(1, 1, 10));
void generateCameraMatrix(Mat& cameraMatrix);
void generateDistCoeffs(Mat& distCoeffs, int count);
double thresh;
RNG rng;
};
CV_UndistortTest::CV_UndistortTest()
{
thresh = 1.0e-2;
}
CV_UndistortTest::~CV_UndistortTest() {}
void CV_UndistortTest::generate3DPointCloud(vector<Point3f>& points, Point3f pmin, Point3f pmax)
{
RNG rng_Point = cv::theRNG(); // fix the seed to use "fixed" input 3D points
for (size_t i = 0; i < points.size(); i++)
{
float _x = rng_Point.uniform(pmin.x, pmax.x);
float _y = rng_Point.uniform(pmin.y, pmax.y);
float _z = rng_Point.uniform(pmin.z, pmax.z);
points[i] = Point3f(_x, _y, _z);
}
}
void CV_UndistortTest::generateCameraMatrix(Mat& cameraMatrix)
{
const double fcMinVal = 1e-3;
const double fcMaxVal = 100;
cameraMatrix.create(3, 3, CV_64FC1);
cameraMatrix.setTo(Scalar(0));
cameraMatrix.at<double>(0,0) = rng.uniform(fcMinVal, fcMaxVal);
cameraMatrix.at<double>(1,1) = rng.uniform(fcMinVal, fcMaxVal);
cameraMatrix.at<double>(0,2) = rng.uniform(fcMinVal, fcMaxVal);
cameraMatrix.at<double>(1,2) = rng.uniform(fcMinVal, fcMaxVal);
cameraMatrix.at<double>(2,2) = 1;
}
void CV_UndistortTest::generateDistCoeffs(Mat& distCoeffs, int count)
{
distCoeffs = Mat::zeros(count, 1, CV_64FC1);
for (int i = 0; i < count; i++)
distCoeffs.at<double>(i,0) = rng.uniform(0.0, 1.0e-3);
}
void CV_UndistortTest::run(int /* start_from */)
{
Mat intrinsics, distCoeffs;
generateCameraMatrix(intrinsics);
vector<Point3f> points(500);
generate3DPointCloud(points);
vector<Point2f> projectedPoints;
projectedPoints.resize(points.size());
int modelMembersCount[] = {4,5,8};
for (int idx = 0; idx < 3; idx++)
{
generateDistCoeffs(distCoeffs, modelMembersCount[idx]);
projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1), Mat::zeros(3,1,CV_64FC1), intrinsics, distCoeffs, projectedPoints);
vector<Point2f> realUndistortedPoints;
projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1), Mat::zeros(3,1,CV_64FC1), intrinsics, Mat::zeros(4,1,CV_64FC1), realUndistortedPoints);
Mat undistortedPoints;
undistortPoints(Mat(projectedPoints), undistortedPoints, intrinsics, distCoeffs);
Mat p;
perspectiveTransform(undistortedPoints, p, intrinsics);
undistortedPoints = p;
double diff = cvtest::norm(Mat(realUndistortedPoints), undistortedPoints, NORM_L2);
if (diff > thresh)
{
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
ts->set_failed_test_info(cvtest::TS::OK);
}
}
TEST(Calib3d_Undistort, accuracy) { CV_UndistortTest test; test.safe_run(); }
TEST(Calib3d_Undistort, stop_criteria)
{
Mat cameraMatrix = (Mat_<double>(3,3,CV_64F) << 857.48296979, 0, 968.06224829,
0, 876.71824265, 556.37145899,
0, 0, 1);
Mat distCoeffs = (Mat_<double>(5,1,CV_64F) <<
-2.57614020e-01, 8.77086999e-02, -2.56970803e-04, -5.93390389e-04, -1.52194091e-02);
RNG rng(2);
Point2d pt_distorted(rng.uniform(0.0, 1920.0), rng.uniform(0.0, 1080.0));
std::vector<Point2d> pt_distorted_vec;
pt_distorted_vec.push_back(pt_distorted);
const double maxError = 1e-6;
TermCriteria criteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 100, maxError);
std::vector<Point2d> pt_undist_vec;
undistortPoints(pt_distorted_vec, pt_undist_vec, cameraMatrix, distCoeffs, noArray(), noArray(), criteria);
std::vector<Point2d> pt_redistorted_vec;
std::vector<Point3d> pt_undist_vec_homogeneous;
pt_undist_vec_homogeneous.push_back( Point3d(pt_undist_vec[0].x, pt_undist_vec[0].y, 1.0) );
projectPoints(pt_undist_vec_homogeneous, Mat::zeros(3,1,CV_64F), Mat::zeros(3,1,CV_64F), cameraMatrix, distCoeffs, pt_redistorted_vec);
const double obtainedError = sqrt( pow(pt_distorted.x - pt_redistorted_vec[0].x, 2) + pow(pt_distorted.y - pt_redistorted_vec[0].y, 2) );
ASSERT_LE(obtainedError, maxError);
}
TEST(undistortPoints, regression_14583)
{
const int col = 720;
// const int row = 540;
float camera_matrix_value[] = {
437.8995f, 0.0f, 342.9241f,
0.0f, 438.8216f, 273.7163f,
0.0f, 0.0f, 1.0f
};
cv::Mat camera_interior(3, 3, CV_32F, camera_matrix_value);
float camera_distort_value[] = {-0.34329f, 0.11431f, 0.0f, 0.0f, -0.017375f};
cv::Mat camera_distort(1, 5, CV_32F, camera_distort_value);
float distort_points_value[] = {col, 0.};
cv::Mat distort_pt(1, 1, CV_32FC2, distort_points_value);
cv::Mat undistort_pt;
cv::undistortPoints(distort_pt, undistort_pt, camera_interior,
camera_distort, cv::Mat(), camera_interior);
EXPECT_NEAR(distort_pt.at<Vec2f>(0)[0], undistort_pt.at<Vec2f>(0)[0], col / 2)
<< "distort point: " << distort_pt << std::endl
<< "undistort point: " << undistort_pt;
}
}} // namespace
|