1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
// #define GENERATE_DATA // generate data in debug mode
namespace opencv_test { namespace {
#ifndef GENERATE_DATA
static bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
{
const float maxPtDif = 1.f;
const float maxSizeDif = 1.f;
const float maxAngleDif = 2.f;
const float maxResponseDif = 0.1f;
float dist = (float)cv::norm( p1.pt - p2.pt );
return (dist < maxPtDif &&
fabs(p1.size - p2.size) < maxSizeDif &&
abs(p1.angle - p2.angle) < maxAngleDif &&
abs(p1.response - p2.response) < maxResponseDif &&
(p1.octave & 0xffff) == (p2.octave & 0xffff) // do not care about sublayers and class_id
);
}
#endif
TEST(Features2d_AFFINE_FEATURE, regression)
{
Mat image = imread(cvtest::findDataFile("features2d/tsukuba.png"));
string xml = cvtest::TS::ptr()->get_data_path() + "asift/regression_cpp.xml.gz";
ASSERT_FALSE(image.empty());
Mat gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
// Default ASIFT generates too large descriptors. This test uses small maxTilt to suppress the size of testdata.
Ptr<AffineFeature> ext = AffineFeature::create(SIFT::create(), 2, 0, 1.4142135623730951f, 144.0f);
Mat mpt, msize, mangle, mresponse, moctave, mclass_id;
#ifdef GENERATE_DATA
// calculate
vector<KeyPoint> calcKeypoints;
Mat calcDescriptors;
ext->detectAndCompute(gray, Mat(), calcKeypoints, calcDescriptors, false);
// create keypoints XML
FileStorage fs(xml, FileStorage::WRITE);
ASSERT_TRUE(fs.isOpened()) << xml;
std::cout << "Creating keypoints XML..." << std::endl;
mpt = Mat(calcKeypoints.size(), 2, CV_32F);
msize = Mat(calcKeypoints.size(), 1, CV_32F);
mangle = Mat(calcKeypoints.size(), 1, CV_32F);
mresponse = Mat(calcKeypoints.size(), 1, CV_32F);
moctave = Mat(calcKeypoints.size(), 1, CV_32S);
mclass_id = Mat(calcKeypoints.size(), 1, CV_32S);
for( size_t i = 0; i < calcKeypoints.size(); i++ )
{
const KeyPoint& key = calcKeypoints[i];
mpt.at<float>(i, 0) = key.pt.x;
mpt.at<float>(i, 1) = key.pt.y;
msize.at<float>(i, 0) = key.size;
mangle.at<float>(i, 0) = key.angle;
mresponse.at<float>(i, 0) = key.response;
moctave.at<int>(i, 0) = key.octave;
mclass_id.at<int>(i, 0) = key.class_id;
}
fs << "keypoints_pt" << mpt;
fs << "keypoints_size" << msize;
fs << "keypoints_angle" << mangle;
fs << "keypoints_response" << mresponse;
fs << "keypoints_octave" << moctave;
fs << "keypoints_class_id" << mclass_id;
// create descriptor XML
fs << "descriptors" << calcDescriptors;
fs.release();
#else
const float badCountsRatio = 0.01f;
const float badDescriptorDist = 1.0f;
const float maxBadKeypointsRatio = 0.15f;
const float maxBadDescriptorRatio = 0.15f;
// read keypoints
vector<KeyPoint> validKeypoints;
Mat validDescriptors;
FileStorage fs(xml, FileStorage::READ);
ASSERT_TRUE(fs.isOpened()) << xml;
fs["keypoints_pt"] >> mpt;
ASSERT_EQ(mpt.type(), CV_32F);
fs["keypoints_size"] >> msize;
ASSERT_EQ(msize.type(), CV_32F);
fs["keypoints_angle"] >> mangle;
ASSERT_EQ(mangle.type(), CV_32F);
fs["keypoints_response"] >> mresponse;
ASSERT_EQ(mresponse.type(), CV_32F);
fs["keypoints_octave"] >> moctave;
ASSERT_EQ(moctave.type(), CV_32S);
fs["keypoints_class_id"] >> mclass_id;
ASSERT_EQ(mclass_id.type(), CV_32S);
validKeypoints.resize(mpt.rows);
for( int i = 0; i < (int)validKeypoints.size(); i++ )
{
validKeypoints[i].pt.x = mpt.at<float>(i, 0);
validKeypoints[i].pt.y = mpt.at<float>(i, 1);
validKeypoints[i].size = msize.at<float>(i, 0);
validKeypoints[i].angle = mangle.at<float>(i, 0);
validKeypoints[i].response = mresponse.at<float>(i, 0);
validKeypoints[i].octave = moctave.at<int>(i, 0);
validKeypoints[i].class_id = mclass_id.at<int>(i, 0);
}
// read descriptors
fs["descriptors"] >> validDescriptors;
fs.release();
// calc and compare keypoints
vector<KeyPoint> calcKeypoints;
ext->detectAndCompute(gray, Mat(), calcKeypoints, noArray(), false);
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
ASSERT_LT(countRatio, 1 + badCountsRatio) << "Bad keypoints count ratio.";
ASSERT_GT(countRatio, 1 - badCountsRatio) << "Bad keypoints count ratio.";
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size());
for( size_t v = 0; v < validKeypoints.size(); v++ )
{
int nearestIdx = -1;
float minDist = std::numeric_limits<float>::max();
float angleDistOfNearest = std::numeric_limits<float>::max();
for( size_t c = 0; c < calcKeypoints.size(); c++ )
{
if( validKeypoints[v].class_id != calcKeypoints[c].class_id )
continue;
float curDist = (float)cv::norm( calcKeypoints[c].pt - validKeypoints[v].pt );
if( curDist < minDist )
{
minDist = curDist;
nearestIdx = (int)c;
angleDistOfNearest = abs( calcKeypoints[c].angle - validKeypoints[v].angle );
}
else if( curDist == minDist ) // the keypoints whose positions are same but angles are different
{
float angleDist = abs( calcKeypoints[c].angle - validKeypoints[v].angle );
if( angleDist < angleDistOfNearest )
{
nearestIdx = (int)c;
angleDistOfNearest = angleDist;
}
}
}
if( nearestIdx == -1 || !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
badPointCount++;
}
float badKeypointsRatio = (float)badPointCount / (float)commonPointCount;
std::cout << "badKeypointsRatio: " << badKeypointsRatio << std::endl;
ASSERT_LT( badKeypointsRatio , maxBadKeypointsRatio ) << "Bad accuracy!";
// Calc and compare descriptors. This uses validKeypoints for extraction.
Mat calcDescriptors;
ext->detectAndCompute(gray, Mat(), validKeypoints, calcDescriptors, true);
int dim = validDescriptors.cols;
int badDescriptorCount = 0;
L1<float> distance;
for( int i = 0; i < (int)validKeypoints.size(); i++ )
{
float dist = distance( validDescriptors.ptr<float>(i), calcDescriptors.ptr<float>(i), dim );
if( dist > badDescriptorDist )
badDescriptorCount++;
}
float badDescriptorRatio = (float)badDescriptorCount / (float)validKeypoints.size();
std::cout << "badDescriptorRatio: " << badDescriptorRatio << std::endl;
ASSERT_LT( badDescriptorRatio, maxBadDescriptorRatio ) << "Too many descriptors mismatched.";
#endif
}
}} // namespace
|