File: test_gapi_sample_pipelines.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (44 lines) | stat: -rw-r--r-- 1,225 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python

import numpy as np
import cv2 as cv
import os

from tests_common import NewOpenCVTests


# Plaidml is an optional backend
pkgs = [
         ('ocl'    , cv.gapi.core.ocl.kernels()),
         ('cpu'    , cv.gapi.core.cpu.kernels()),
         ('fluid'  , cv.gapi.core.fluid.kernels())
         # ('plaidml', cv.gapi.core.plaidml.kernels())
     ]


class gapi_sample_pipelines(NewOpenCVTests):

    # NB: This test check multiple outputs for operation
    def test_mean_over_r(self):
        img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
        in_mat = cv.imread(img_path)

        # # OpenCV
        _, _, r_ch = cv.split(in_mat)
        expected = cv.mean(r_ch)

        # G-API
        g_in = cv.GMat()
        b, g, r = cv.gapi.split3(g_in)
        g_out = cv.gapi.mean(r)
        comp = cv.GComputation(g_in, g_out)

        for pkg_name, pkg in pkgs:
            actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
            # Comparison
            self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
                             'Failed on ' + pkg_name + ' backend')


if __name__ == '__main__':
    NewOpenCVTests.bootstrap()