1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
#include <algorithm>
#include <iostream>
#include <sstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/highgui.hpp>
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
"{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }"
"{ r roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }";
namespace {
std::string weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
return static_cast<unsigned char>(std::tolower(c));
});
CV_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
cv::Rect rv;
char delim[3];
std::stringstream is(rc);
is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
if (is.bad()) {
return cv::util::optional<cv::Rect>(); // empty value
}
const auto is_delim = [](char c) {
return c == ',';
};
if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
return cv::util::optional<cv::Rect>(); // empty value
}
if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
return cv::util::optional<cv::Rect>(); // empty value
}
return cv::util::make_optional(std::move(rv));
}
} // namespace
namespace custom {
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
using GDetections = cv::GArray<cv::Rect>;
using GRect = cv::GOpaque<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
G_API_OP(GetSize, <GSize(cv::GMat)>, "sample.custom.get-size") {
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(LocateROI, <GRect(cv::GMat)>, "sample.custom.locate-roi") {
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
GAPI_OCV_KERNEL(OCVGetSize, GetSize) {
static void run(const cv::Mat &in, cv::Size &out) {
out = {in.cols, in.rows};
}
};
GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
// This is the place where we can run extra analytics
// on the input image frame and select the ROI (region
// of interest) where we want to detect our objects (or
// run any other inference).
//
// Currently it doesn't do anything intelligent,
// but only crops the input image to square (this is
// the most convenient aspect ratio for detectors to use)
static void run(const cv::Mat &in_mat, cv::Rect &out_rect) {
// Identify the central point & square size (- some padding)
const auto center = cv::Point{in_mat.cols/2, in_mat.rows/2};
auto sqside = std::min(in_mat.cols, in_mat.rows);
// Now build the central square ROI
out_rect = cv::Rect{ center.x - sqside/2
, center.y - sqside/2
, sqside
, sqside
};
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Rect &in_roi,
const cv::Size &in_parent_size,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
CV_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Size up_roi = in_roi.size();
const cv::Rect surface({0,0}, in_parent_size);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label; // unused
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
// map relative coordinates to the original image scale
// taking the ROI into account
cv::Rect rc;
rc.x = static_cast<int>(rc_left * up_roi.width);
rc.y = static_cast<int>(rc_top * up_roi.height);
rc.width = static_cast<int>(rc_right * up_roi.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
rc.x += in_roi.x;
rc.y += in_roi.y;
out_objects.emplace_back(rc & surface);
}
}
};
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
// This kernel converts the rectangles into G-API's
// rendering primitives
static void run(const std::vector<cv::Rect> &in_face_rcs,
const cv::Rect &in_roi,
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
out_prims.clear();
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
return cv::gapi::wip::draw::Rect(rc, clr, 2);
};
out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
for (auto &&rc : in_face_rcs) {
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
}
}
};
} // namespace custom
int main(int argc, char *argv[])
{
cv::CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// Prepare parameters first
const std::string input = cmd.get<std::string>("input");
const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
const auto face_model_path = cmd.get<std::string>("facem");
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
face_model_path, // path to topology IR
weights_path(face_model_path), // path to weights
cmd.get<std::string>("faced"), // device specifier
};
auto kernels = cv::gapi::kernels
< custom::OCVGetSize
, custom::OCVLocateROI
, custom::OCVParseSSD
, custom::OCVBBoxes>();
auto networks = cv::gapi::networks(face_net);
// Now build the graph. The graph structure may vary
// pased on the input parameters
cv::GStreamingCompiled pipeline;
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
if (opt_roi.has_value()) {
// Use the value provided by user
std::cout << "Will run inference for static region "
<< opt_roi.value()
<< " only"
<< std::endl;
cv::GMat in;
cv::GOpaque<cv::Rect> in_roi;
auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
auto rcs = custom::ParseSSD::on(blob, in_roi, custom::GetSize::on(in));
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, in_roi));
pipeline = cv::GComputation(cv::GIn(in, in_roi), cv::GOut(out))
.compileStreaming(cv::compile_args(kernels, networks));
// Since the ROI to detect is manual, make it part of the input vector
inputs.push_back(cv::gin(opt_roi.value())[0]);
} else {
// Automatically detect ROI to infer. Make it output parameter
std::cout << "ROI is not set or invalid. Locating it automatically"
<< std::endl;
cv::GMat in;
cv::GOpaque<cv::Rect> roi = custom::LocateROI::on(in);
auto blob = cv::gapi::infer<custom::FaceDetector>(roi, in);
auto rcs = custom::ParseSSD::on(blob, roi, custom::GetSize::on(in));
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, roi));
pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
.compileStreaming(cv::compile_args(kernels, networks));
}
// The execution part
pipeline.setSource(std::move(inputs));
pipeline.start();
cv::Mat out;
while (pipeline.pull(cv::gout(out))) {
cv::imshow("Out", out);
cv::waitKey(1);
}
return 0;
}
|