1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
#include <algorithm>
#include <iostream>
#include <sstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/imgproc.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/infer/onnx.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/highgui.hpp>
namespace custom {
G_API_NET(ObjDetector, <cv::GMat(cv::GMat)>, "object-detector");
using GDetections = cv::GArray<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
G_API_OP(GetSize, <GSize(cv::GMat)>, "sample.custom.get-size") {
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(ParseSSD, <GDetections(cv::GMat, GSize)>, "sample.custom.parse-ssd") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
G_API_OP(BBoxes, <GPrims(GDetections)>, "sample.custom.b-boxes") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc &) {
return cv::empty_array_desc();
}
};
GAPI_OCV_KERNEL(OCVGetSize, GetSize) {
static void run(const cv::Mat &in, cv::Size &out) {
out = {in.cols, in.rows};
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Size &in_parent_size,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
CV_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Rect surface({0,0}, in_parent_size);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label; // unused
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
// map relative coordinates to the original image scale
cv::Rect rc;
rc.x = static_cast<int>(rc_left * in_parent_size.width);
rc.y = static_cast<int>(rc_top * in_parent_size.height);
rc.width = static_cast<int>(rc_right * in_parent_size.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * in_parent_size.height) - rc.y;
out_objects.emplace_back(rc & surface);
}
}
};
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
// This kernel converts the rectangles into G-API's
// rendering primitives
static void run(const std::vector<cv::Rect> &in_obj_rcs,
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
out_prims.clear();
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
return cv::gapi::wip::draw::Rect(rc, clr, 2);
};
for (auto &&rc : in_obj_rcs) {
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
}
std::cout << "Detections:";
for (auto &&rc : in_obj_rcs) std::cout << ' ' << rc;
std::cout << std::endl;
}
};
} // namespace custom
namespace {
void remap_ssd_ports(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Assemble ONNX-processed outputs back to a single 1x1x200x7 blob
// to preserve compatibility with OpenVINO-based SSD pipeline
const cv::Mat &num_detections = onnx.at("num_detections:0");
const cv::Mat &detection_boxes = onnx.at("detection_boxes:0");
const cv::Mat &detection_scores = onnx.at("detection_scores:0");
const cv::Mat &detection_classes = onnx.at("detection_classes:0");
GAPI_Assert(num_detections.depth() == CV_32F);
GAPI_Assert(detection_boxes.depth() == CV_32F);
GAPI_Assert(detection_scores.depth() == CV_32F);
GAPI_Assert(detection_classes.depth() == CV_32F);
cv::Mat &ssd_output = gapi.at("detection_output");
const int num_objects = static_cast<int>(num_detections.ptr<float>()[0]);
const float *in_boxes = detection_boxes.ptr<float>();
const float *in_scores = detection_scores.ptr<float>();
const float *in_classes = detection_classes.ptr<float>();
float *ptr = ssd_output.ptr<float>();
for (int i = 0; i < num_objects; i++) {
ptr[0] = 0.f; // "image_id"
ptr[1] = in_classes[i]; // "label"
ptr[2] = in_scores[i]; // "confidence"
ptr[3] = in_boxes[4*i + 1]; // left
ptr[4] = in_boxes[4*i + 0]; // top
ptr[5] = in_boxes[4*i + 3]; // right
ptr[6] = in_boxes[4*i + 2]; // bottom
ptr += 7;
in_boxes += 4;
}
if (num_objects < ssd_output.size[2]-1) {
// put a -1 mark at the end of output blob if there is space left
ptr[0] = -1.f;
}
}
} // anonymous namespace
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ output | | (Optional) path to output video file }"
"{ detm | | Path to an ONNX SSD object detection model (.onnx) }"
;
int main(int argc, char *argv[])
{
cv::CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// Prepare parameters first
const std::string input = cmd.get<std::string>("input");
const std::string output = cmd.get<std::string>("output");
const auto obj_model_path = cmd.get<std::string>("detm");
auto obj_net = cv::gapi::onnx::Params<custom::ObjDetector>{obj_model_path}
.cfgOutputLayers({"detection_output"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1,1,200,7}}}, remap_ssd_ports);
auto kernels = cv::gapi::kernels< custom::OCVGetSize
, custom::OCVParseSSD
, custom::OCVBBoxes>();
auto networks = cv::gapi::networks(obj_net);
// Now build the graph
cv::GMat in;
auto blob = cv::gapi::infer<custom::ObjDetector>(in);
auto rcs = custom::ParseSSD::on(blob, custom::GetSize::on(in));
auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs));
cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
.compileStreaming(cv::compile_args(kernels, networks));
auto inputs = cv::gin(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
// The execution part
pipeline.setSource(std::move(inputs));
pipeline.start();
cv::VideoWriter writer;
cv::Mat outMat;
while (pipeline.pull(cv::gout(outMat))) {
cv::imshow("Out", outMat);
cv::waitKey(1);
if (!output.empty()) {
if (!writer.isOpened()) {
const auto sz = cv::Size{outMat.cols, outMat.rows};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
CV_Assert(writer.isOpened());
}
writer << outMat;
}
}
return 0;
}
|