1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#include "../test_precomp.hpp"
#ifdef HAVE_ONNX
#include <stdexcept>
#include <onnxruntime_cxx_api.h>
#include <ade/util/iota_range.hpp>
#include <opencv2/gapi/own/convert.hpp>
#include <opencv2/gapi/infer/onnx.hpp>
namespace {
struct ONNXInitPath {
ONNXInitPath() {
const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH");
if (env_path) {
cvtest::addDataSearchPath(env_path);
}
}
};
static ONNXInitPath g_init_path;
cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) {
const cv::Mat in_mat1 = cv::Mat(sz_in, type);
if (CV_MAT_DEPTH(type) < CV_32F) {
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
} else {
const int fscale = 256; // avoid bits near ULP, generate stable test input
cv::Mat in_mat32s(in_mat1.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale));
in_mat32s.convertTo(in_mat1, type, 1.0f / fscale, 0);
}
return in_mat1;
}
} // anonymous namespace
namespace opencv_test
{
namespace {
// FIXME: taken from the DNN module
void normAssert(const cv::InputArray& ref, const cv::InputArray& test,
const char *comment /*= ""*/,
const double l1 = 0.00001, const double lInf = 0.0001) {
const double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
EXPECT_LE(normL1, l1) << comment;
const double normInf = cvtest::norm(ref, test, cv::NORM_INF);
EXPECT_LE(normInf, lInf) << comment;
}
inline std::string findModel(const std::string &model_name) {
return findDataFile("vision/" + model_name + ".onnx", false);
}
inline void toCHW(const cv::Mat& src, cv::Mat& dst) {
dst.create(cv::Size(src.cols, src.rows * src.channels()), CV_32F);
std::vector<cv::Mat> planes;
for (int i = 0; i < src.channels(); ++i) {
planes.push_back(dst.rowRange(i * src.rows, (i + 1) * src.rows));
}
cv::split(src, planes);
}
inline int toCV(const ONNXTensorElementDataType prec) {
switch (prec) {
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
default: GAPI_Assert(false && "Unsupported data type");
}
return -1;
}
inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
return cv::to_own<int64_t>(sz);
}
inline std::vector<const char*> getCharNames(const std::vector<std::string>& names) {
std::vector<const char*> out_vec;
for (const auto& el : names) {
out_vec.push_back(el.data());
}
return out_vec;
}
inline void copyToOut(const cv::Mat& in, cv::Mat& out) {
GAPI_Assert(in.depth() == CV_32F);
GAPI_Assert(in.size == out.size);
const float* const inptr = in.ptr<float>();
float* const optr = out.ptr<float>();
const int size = in.total();
for (int i = 0; i < size; ++i) {
optr[i] = inptr[i];
}
}
void remapYolo(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
GAPI_Assert(onnx.size() == 1u);
GAPI_Assert(gapi.size() == 1u);
// Result from Run method
const cv::Mat& in = onnx.begin()->second;
// Configured output
cv::Mat& out = gapi.begin()->second;
// Simple copy
copyToOut(in, out);
}
void remapSsdPorts(const std::unordered_map<std::string, cv::Mat> &onnx,
std::unordered_map<std::string, cv::Mat> &gapi) {
// Result from Run method
const cv::Mat& in_num = onnx.at("num_detections:0");
const cv::Mat& in_boxes = onnx.at("detection_boxes:0");
const cv::Mat& in_scores = onnx.at("detection_scores:0");
const cv::Mat& in_classes = onnx.at("detection_classes:0");
// Configured outputs
cv::Mat& out_boxes = gapi.at("out1");
cv::Mat& out_classes = gapi.at("out2");
cv::Mat& out_scores = gapi.at("out3");
cv::Mat& out_num = gapi.at("out4");
// Simple copy for outputs
copyToOut(in_num, out_num);
copyToOut(in_boxes, out_boxes);
copyToOut(in_scores, out_scores);
copyToOut(in_classes, out_classes);
}
class ONNXtest : public ::testing::Test {
public:
std::string model_path;
size_t num_in, num_out;
std::vector<cv::Mat> out_gapi;
std::vector<cv::Mat> out_onnx;
cv::Mat in_mat1;
ONNXtest() {
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test");
memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
out_gapi.resize(1);
out_onnx.resize(1);
// FIXME: All tests chek "random" image
// Ideally it should be a real image
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
}
template<typename T>
void infer(const std::vector<cv::Mat>& ins,
std::vector<cv::Mat>& outs) {
// Prepare session
session = Ort::Session(env, model_path.data(), session_options);
num_in = session.GetInputCount();
num_out = session.GetOutputCount();
GAPI_Assert(num_in == ins.size());
in_node_names.clear();
out_node_names.clear();
// Inputs Run params
std::vector<Ort::Value> in_tensors;
for(size_t i = 0; i < num_in; ++i) {
char* in_node_name_p = session.GetInputName(i, allocator);
in_node_names.push_back(std::string(in_node_name_p));
allocator.Free(in_node_name_p);
in_node_dims = toORT(ins[i].size);
in_tensors.emplace_back(Ort::Value::CreateTensor<T>(memory_info,
const_cast<T*>(ins[i].ptr<T>()),
ins[i].total(),
in_node_dims.data(),
in_node_dims.size()));
}
// Outputs Run params
for(size_t i = 0; i < num_out; ++i) {
char* out_node_name_p = session.GetOutputName(i, allocator);
out_node_names.push_back(std::string(out_node_name_p));
allocator.Free(out_node_name_p);
}
// Input/output order by names
const auto in_run_names = getCharNames(in_node_names);
const auto out_run_names = getCharNames(out_node_names);
// Run
auto result = session.Run(Ort::RunOptions{nullptr},
in_run_names.data(),
&in_tensors.front(),
num_in,
out_run_names.data(),
num_out);
// Copy outputs
GAPI_Assert(result.size() == num_out);
outs.resize(num_out);
for (size_t i = 0; i < num_out; ++i) {
const auto info = result[i].GetTensorTypeAndShapeInfo();
const auto shape = info.GetShape();
const auto type = info.GetElementType();
cv::Mat mt(std::vector<int>(shape.begin(), shape.end()), toCV(type),
reinterpret_cast<void*>(result[i].GetTensorMutableData<uint8_t*>()));
mt.copyTo(outs[i]);
}
}
// One input/output overload
template<typename T>
void infer(const cv::Mat& in, cv::Mat& out) {
std::vector<cv::Mat> result;
infer<T>({in}, result);
GAPI_Assert(result.size() == 1u);
out = result.front();
}
void validate() {
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
ASSERT_EQ(out_gapi.size(), out_onnx.size());
const auto size = out_gapi.size();
for (size_t i = 0; i < size; ++i) {
normAssert(out_onnx[i], out_gapi[i], "Test outputs");
}
}
void useModel(const std::string& model_name) {
model_path = findModel(model_name);
}
private:
Ort::Env env{nullptr};
Ort::MemoryInfo memory_info{nullptr};
Ort::AllocatorWithDefaultOptions allocator;
Ort::SessionOptions session_options;
Ort::Session session{nullptr};
std::vector<int64_t> in_node_dims;
std::vector<std::string> in_node_names;
std::vector<std::string> out_node_names;
};
class ONNXClassificationTest : public ONNXtest {
public:
const cv::Scalar mean = { 0.485, 0.456, 0.406 };
const cv::Scalar std = { 0.229, 0.224, 0.225 };
void preprocess(const cv::Mat& src, cv::Mat& dst) {
const int new_h = 224;
const int new_w = 224;
cv::Mat tmp, cvt, rsz;
cv::resize(src, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F, 1.f / 255);
tmp = (cvt - mean) / std;
toCHW(tmp, dst);
dst = dst.reshape(1, {1, 3, new_h, new_w});
}
};
class ONNXGRayScaleTest : public ONNXtest {
public:
void preprocess(const cv::Mat& src, cv::Mat& dst) {
const int new_h = 64;
const int new_w = 64;
cv::Mat cvc, rsz, cvt;
cv::cvtColor(src, cvc, cv::COLOR_BGR2GRAY);
cv::resize(cvc, rsz, cv::Size(new_w, new_h));
rsz.convertTo(cvt, CV_32F);
toCHW(cvt, dst);
dst = dst.reshape(1, {1, 1, new_h, new_w});
}
};
} // anonymous namespace
TEST_F(ONNXClassificationTest, Infer)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
// ONNX_API code
cv::Mat processed_mat;
preprocess(in_mat1, processed_mat);
infer<float>(processed_mat, out_onnx.front());
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(in_mat1),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXtest, InferTensor)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
// Create tensor
// FIXME: Test cheks "random" image
// Ideally it should be a real image
const cv::Mat rand_mat = initMatrixRandU(CV_32FC3, cv::Size{224, 224});
const std::vector<int> dims = {1, rand_mat.channels(), rand_mat.rows, rand_mat.cols};
const cv::Mat tensor(dims, CV_32F, rand_mat.data);
// ONNX_API code
infer<float>(tensor, out_onnx.front());
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path };
comp.apply(cv::gin(tensor),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassificationTest, InferROI)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const cv::Rect ROI(cv::Point{0, 0}, cv::Size{250, 250});
// ONNX_API code
cv::Mat roi_mat;
preprocess(in_mat1(ROI), roi_mat);
infer<float>(roi_mat, out_onnx.front());
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GOpaque<cv::Rect> rect;
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(in_mat1, ROI),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassificationTest, InferROIList)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const std::vector<cv::Rect> rois = {
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
};
// ONNX_API code
out_onnx.resize(rois.size());
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx[i]);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(in_mat1, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXClassificationTest, Infer2ROIList)
{
useModel("classification/squeezenet/model/squeezenet1.0-9");
const std::vector<cv::Rect> rois = {
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
};
// ONNX_API code
out_onnx.resize(rois.size());
for (size_t i = 0; i < rois.size(); ++i) {
cv::Mat roi_mat;
preprocess(in_mat1(rois[i]), roi_mat);
infer<float>(roi_mat, out_onnx[i]);
}
// G_API code
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
cv::GMat in;
cv::GArray<cv::Rect> rr;
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
// NOTE: We have to normalize U8 tensor
// so cfgMeanStd() is here
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
comp.apply(cv::gin(in_mat1, rois),
cv::gout(out_gapi),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXtest, InferDynamicInputTensor)
{
useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8");
// Create tensor
// FIXME: Test cheks "random" image
// Ideally it should be a real image
const cv::Mat rand_mat = initMatrixRandU(CV_32FC3, cv::Size{416, 416});
const std::vector<int> dims = {1, rand_mat.channels(), rand_mat.rows, rand_mat.cols};
cv::Mat tensor(dims, CV_32F, rand_mat.data);
const cv::Mat in_tensor = tensor / 255.f;
// ONNX_API code
infer<float>(in_tensor, out_onnx.front());
// G_API code
G_API_NET(YoloNet, <cv::GMat(cv::GMat)>, "YoloNet");
cv::GMat in;
cv::GMat out = cv::gapi::infer<YoloNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 125, 13, 13}}}, remapYolo)
.cfgOutputLayers({"out"});
comp.apply(cv::gin(in_tensor),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXGRayScaleTest, InferImage)
{
useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8");
// ONNX_API code
cv::Mat prep_mat;
preprocess(in_mat1, prep_mat);
infer<float>(prep_mat, out_onnx.front());
// G_API code
G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus");
cv::GMat in;
cv::GMat out = cv::gapi::infer<EmotionNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
auto net = cv::gapi::onnx::Params<EmotionNet> { model_path }
.cfgNormalize({ false }); // model accepts 0..255 range in FP32;
comp.apply(cv::gin(in_mat1),
cv::gout(out_gapi.front()),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
TEST_F(ONNXtest, InferMultOutput)
{
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
// ONNX_API code
const auto prep_mat = in_mat1.reshape(1, {1, in_mat1.rows, in_mat1.cols, in_mat1.channels()});
infer<uint8_t>({prep_mat}, out_onnx);
// G_API code
using SSDOut = std::tuple<cv::GMat, cv::GMat, cv::GMat, cv::GMat>;
G_API_NET(MobileNet, <SSDOut(cv::GMat)>, "ssd_mobilenet");
cv::GMat in;
cv::GMat out1, out2, out3, out4;
std::tie(out1, out2, out3, out4) = cv::gapi::infer<MobileNet>(in);
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3, out4));
auto net = cv::gapi::onnx::Params<MobileNet>{model_path}
.cfgOutputLayers({"out1", "out2", "out3", "out4"})
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 100, 4}},
cv::GMatDesc{CV_32F, {1, 100}},
cv::GMatDesc{CV_32F, {1, 100}},
cv::GMatDesc{CV_32F, {1, 1}}}, remapSsdPorts);
out_gapi.resize(num_out);
comp.apply(cv::gin(in_mat1),
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2], out_gapi[3]),
cv::compile_args(cv::gapi::networks(net)));
// Validate
validate();
}
} // namespace opencv_test
#endif // HAVE_ONNX
|