1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
static const int fixedShiftU8 = 8;
template <typename T, int fixedShift>
void eval4(int64_t xcoeff0, int64_t xcoeff1, int64_t ycoeff0, int64_t ycoeff1, int cn,
uint8_t* src_pt00, uint8_t* src_pt01, uint8_t* src_pt10, uint8_t* src_pt11, uint8_t* dst_pt)
{
static const int64_t fixedRound = ((1LL << (fixedShift * 2)) >> 1);
int64_t val = (((T*)src_pt00)[cn] * xcoeff0 + ((T*)src_pt01)[cn] * xcoeff1) * ycoeff0 +
(((T*)src_pt10)[cn] * xcoeff0 + ((T*)src_pt11)[cn] * xcoeff1) * ycoeff1 ;
((T*)dst_pt)[cn] = saturate_cast<T>((val + fixedRound) >> (fixedShift * 2));
}
TEST(Resize_Bitexact, Linear8U)
{
static const int64_t fixedOne = (1L << fixedShiftU8);
struct testmode
{
int type;
Size sz;
} modes[] = {
{ CV_8UC1, Size( 512, 768) }, // 1/2 1
{ CV_8UC3, Size( 512, 768) },
{ CV_8UC1, Size(1024, 384) }, // 1 1/2
{ CV_8UC4, Size(1024, 384) },
{ CV_8UC1, Size( 512, 384) }, // 1/2 1/2
{ CV_8UC2, Size( 512, 384) },
{ CV_8UC3, Size( 512, 384) },
{ CV_8UC4, Size( 512, 384) },
{ CV_8UC1, Size( 256, 192) }, // 1/4 1/4
{ CV_8UC2, Size( 256, 192) },
{ CV_8UC3, Size( 256, 192) },
{ CV_8UC4, Size( 256, 192) },
{ CV_8UC1, Size( 4, 3) }, // 1/256 1/256
{ CV_8UC2, Size( 4, 3) },
{ CV_8UC3, Size( 4, 3) },
{ CV_8UC4, Size( 4, 3) },
{ CV_8UC1, Size( 342, 384) }, // 1/3 1/2
{ CV_8UC1, Size( 342, 256) }, // 1/3 1/3
{ CV_8UC2, Size( 342, 256) },
{ CV_8UC3, Size( 342, 256) },
{ CV_8UC4, Size( 342, 256) },
{ CV_8UC1, Size( 512, 256) }, // 1/2 1/3
{ CV_8UC1, Size( 146, 110) }, // 1/7 1/7
{ CV_8UC3, Size( 146, 110) },
{ CV_8UC4, Size( 146, 110) },
{ CV_8UC1, Size( 931, 698) }, // 10/11 10/11
{ CV_8UC2, Size( 931, 698) },
{ CV_8UC3, Size( 931, 698) },
{ CV_8UC4, Size( 931, 698) },
{ CV_8UC1, Size( 853, 640) }, // 10/12 10/12
{ CV_8UC3, Size( 853, 640) },
{ CV_8UC4, Size( 853, 640) },
{ CV_8UC1, Size(1004, 753) }, // 251/256 251/256
{ CV_8UC2, Size(1004, 753) },
{ CV_8UC3, Size(1004, 753) },
{ CV_8UC4, Size(1004, 753) },
{ CV_8UC1, Size(2048,1536) }, // 2 2
{ CV_8UC2, Size(2048,1536) },
{ CV_8UC4, Size(2048,1536) },
{ CV_8UC1, Size(3072,2304) }, // 3 3
{ CV_8UC3, Size(3072,2304) },
{ CV_8UC1, Size(7168,5376) } // 7 7
};
for (int modeind = 0, _modecnt = sizeof(modes) / sizeof(modes[0]); modeind < _modecnt; ++modeind)
{
int type = modes[modeind].type, depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
int dcols = modes[modeind].sz.width, drows = modes[modeind].sz.height;
int cols = 1024, rows = 768;
double inv_scale_x = (double)dcols / cols;
double inv_scale_y = (double)drows / rows;
softdouble scale_x = softdouble::one() / softdouble(inv_scale_x);
softdouble scale_y = softdouble::one() / softdouble(inv_scale_y);
Mat src(rows, cols, type), refdst(drows, dcols, type), dst;
RNG rnd(0x123456789abcdefULL);
for (int j = 0; j < rows; j++)
{
uint8_t* line = src.ptr(j);
for (int i = 0; i < cols; i++)
for (int c = 0; c < cn; c++)
{
double val = j < rows / 2 ? ( i < cols / 2 ? ((sin((i + 1)*CV_PI / 256.)*sin((j + 1)*CV_PI / 256.)*sin((cn + 4)*CV_PI / 8.) + 1.)*128.) :
(((i / 128 + j / 128) % 2) * 250 + (j / 128) % 2) ) :
( i < cols / 2 ? ((i / 128) * (85 - j / 256 * 40) * ((j / 128) % 2) + (7 - i / 128) * (85 - j / 256 * 40) * ((j / 128 + 1) % 2)) :
((uchar)rnd) ) ;
if (depth == CV_8U)
line[i*cn + c] = (uint8_t)val;
else if (depth == CV_16U)
((uint16_t*)line)[i*cn + c] = (uint16_t)val;
else if (depth == CV_16S)
((int16_t*)line)[i*cn + c] = (int16_t)val;
else if (depth == CV_32S)
((int32_t*)line)[i*cn + c] = (int32_t)val;
else
CV_Assert(0);
}
}
for (int j = 0; j < drows; j++)
{
softdouble src_row_flt = scale_y*(softdouble(j) + softdouble(0.5)) - softdouble(0.5);
int src_row = cvFloor(src_row_flt);
int64_t ycoeff1 = cvRound64((src_row_flt - softdouble(src_row))*softdouble(fixedOne));
int64_t ycoeff0 = fixedOne - ycoeff1;
for (int i = 0; i < dcols; i++)
{
softdouble src_col_flt = scale_x*(softdouble(i) + softdouble(0.5)) - softdouble(0.5);
int src_col = cvFloor(src_col_flt);
int64_t xcoeff1 = cvRound64((src_col_flt - softdouble(src_col))*softdouble(fixedOne));
int64_t xcoeff0 = fixedOne - xcoeff1;
uint8_t* dst_pt = refdst.ptr(j, i);
uint8_t* src_pt00 = src.ptr( src_row < 0 ? 0 : src_row >= rows ? rows - 1 : src_row ,
src_col < 0 ? 0 : src_col >= cols ? cols - 1 : src_col );
uint8_t* src_pt01 = src.ptr( src_row < 0 ? 0 : src_row >= rows ? rows - 1 : src_row ,
(src_col + 1) < 0 ? 0 : (src_col + 1) >= cols ? cols - 1 : (src_col + 1));
uint8_t* src_pt10 = src.ptr((src_row + 1) < 0 ? 0 : (src_row + 1) >= rows ? rows - 1 : (src_row + 1),
src_col < 0 ? 0 : src_col >= cols ? cols - 1 : src_col );
uint8_t* src_pt11 = src.ptr((src_row + 1) < 0 ? 0 : (src_row + 1) >= rows ? rows - 1 : (src_row + 1),
(src_col + 1) < 0 ? 0 : (src_col + 1) >= cols ? cols - 1 : (src_col + 1));
for (int c = 0; c < cn; c++)
{
if (depth == CV_8U)
eval4< uint8_t, fixedShiftU8>(xcoeff0, xcoeff1, ycoeff0, ycoeff1, c, src_pt00, src_pt01, src_pt10, src_pt11, dst_pt);
else if (depth == CV_16U)
eval4<uint16_t, fixedShiftU8>(xcoeff0, xcoeff1, ycoeff0, ycoeff1, c, src_pt00, src_pt01, src_pt10, src_pt11, dst_pt);
else if (depth == CV_16S)
eval4< int16_t, fixedShiftU8>(xcoeff0, xcoeff1, ycoeff0, ycoeff1, c, src_pt00, src_pt01, src_pt10, src_pt11, dst_pt);
else if (depth == CV_32S)
eval4< int32_t, fixedShiftU8>(xcoeff0, xcoeff1, ycoeff0, ycoeff1, c, src_pt00, src_pt01, src_pt10, src_pt11, dst_pt);
else
CV_Assert(0);
}
}
}
cv::resize(src, dst, Size(dcols, drows), 0, 0, cv::INTER_LINEAR_EXACT);
EXPECT_GE(0, cvtest::norm(refdst, dst, cv::NORM_L1))
<< "Resize " << cn << "-chan mat from " << cols << "x" << rows << " to " << dcols << "x" << drows << " failed with max diff " << cvtest::norm(refdst, dst, cv::NORM_INF);
}
}
PARAM_TEST_CASE(Resize_Bitexact, int)
{
public:
int depth;
virtual void SetUp()
{
depth = GET_PARAM(0);
}
double CountDiff(const Mat& src)
{
Mat dstExact; cv::resize(src, dstExact, Size(), 2, 1, INTER_NEAREST_EXACT);
Mat dstNonExact; cv::resize(src, dstNonExact, Size(), 2, 1, INTER_NEAREST);
return cv::norm(dstExact, dstNonExact, NORM_INF);
}
};
TEST_P(Resize_Bitexact, Nearest8U_vsNonExact)
{
Mat mat_color, mat_gray;
Mat src_color = imread(cvtest::findDataFile("shared/lena.png"));
Mat src_gray; cv::cvtColor(src_color, src_gray, COLOR_BGR2GRAY);
src_color.convertTo(mat_color, depth);
src_gray.convertTo(mat_gray, depth);
EXPECT_EQ(CountDiff(mat_color), 0) << "color, type: " << depth;
EXPECT_EQ(CountDiff(mat_gray), 0) << "gray, type: " << depth;
}
// Now INTER_NEAREST's convention and INTER_NEAREST_EXACT's one are different.
INSTANTIATE_TEST_CASE_P(DISABLED_Imgproc, Resize_Bitexact,
testing::Values(CV_8U, CV_16U, CV_32F, CV_64F)
);
TEST(Resize_Bitexact, Nearest8U)
{
Mat src[6], dst[6];
// 2x decimation
src[0] = (Mat_<uint8_t>(1, 6) << 0, 1, 2, 3, 4, 5);
dst[0] = (Mat_<uint8_t>(1, 3) << 0, 2, 4);
// decimation odd to 1
src[1] = (Mat_<uint8_t>(1, 5) << 0, 1, 2, 3, 4);
dst[1] = (Mat_<uint8_t>(1, 1) << 2);
// decimation n*2-1 to n
src[2] = (Mat_<uint8_t>(1, 5) << 0, 1, 2, 3, 4);
dst[2] = (Mat_<uint8_t>(1, 3) << 0, 2, 4);
// decimation n*2+1 to n
src[3] = (Mat_<uint8_t>(1, 5) << 0, 1, 2, 3, 4);
dst[3] = (Mat_<uint8_t>(1, 2) << 1, 3);
// zoom
src[4] = (Mat_<uint8_t>(3, 5) <<
0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14);
dst[4] = (Mat_<uint8_t>(5, 7) <<
0, 1, 1, 2, 3, 3, 4,
0, 1, 1, 2, 3, 3, 4,
5, 6, 6, 7, 8, 8, 9,
10, 11, 11, 12, 13, 13, 14,
10, 11, 11, 12, 13, 13, 14);
src[5] = (Mat_<uint8_t>(2, 3) <<
0, 1, 2,
3, 4, 5);
dst[5] = (Mat_<uint8_t>(4, 6) <<
0, 0, 1, 1, 2, 2,
0, 0, 1, 1, 2, 2,
3, 3, 4, 4, 5, 5,
3, 3, 4, 4, 5, 5);
for (int i = 0; i < 6; i++)
{
Mat calc;
resize(src[i], calc, dst[i].size(), 0, 0, INTER_NEAREST_EXACT);
EXPECT_EQ(cvtest::norm(calc, dst[i], cv::NORM_L1), 0);
}
}
}} // namespace
|