File: test_kmeans.cpp

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (53 lines) | stat: -rw-r--r-- 1,894 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

#include "test_precomp.hpp"

namespace opencv_test { namespace {

TEST(ML_KMeans, accuracy)
{
    const int iters = 100;
    int sizesArr[] = { 5000, 7000, 8000 };
    int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];

    Mat data( pointsCount, 2, CV_32FC1 ), labels;
    vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
    Mat means;
    vector<Mat> covs;
    defaultDistribs( means, covs );
    generateData( data, labels, sizes, means, covs, CV_32FC1, CV_32SC1 );
    TermCriteria termCriteria( TermCriteria::COUNT, iters, 0.0);

    {
        SCOPED_TRACE("KMEANS_PP_CENTERS");
        float err = 1000;
        Mat bestLabels;
        kmeans( data, 3, bestLabels, termCriteria, 0, KMEANS_PP_CENTERS, noArray() );
        EXPECT_TRUE(calcErr( bestLabels, labels, sizes, err , false ));
        EXPECT_LE(err, 0.01f);
    }
    {
        SCOPED_TRACE("KMEANS_RANDOM_CENTERS");
        float err = 1000;
        Mat bestLabels;
        kmeans( data, 3, bestLabels, termCriteria, 0, KMEANS_RANDOM_CENTERS, noArray() );
        EXPECT_TRUE(calcErr( bestLabels, labels, sizes, err, false ));
        EXPECT_LE(err, 0.01f);
    }
    {
        SCOPED_TRACE("KMEANS_USE_INITIAL_LABELS");
        float err = 1000;
        Mat bestLabels;
        labels.copyTo( bestLabels );
        RNG &rng = cv::theRNG();
        for( int i = 0; i < 0.5f * pointsCount; i++ )
        bestLabels.at<int>( rng.next() % pointsCount, 0 ) = rng.next() % 3;
        kmeans( data, 3, bestLabels, termCriteria, 0, KMEANS_USE_INITIAL_LABELS, noArray() );
        EXPECT_TRUE(calcErr( bestLabels, labels, sizes, err, false ));
        EXPECT_LE(err, 0.01f);
    }
}

}} // namespace