File: test_cuda.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (38 lines) | stat: -rw-r--r-- 1,041 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/usr/bin/env python

'''
CUDA-accelerated Computer Vision functions
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv
import os

from tests_common import NewOpenCVTests, unittest

class cuda_test(NewOpenCVTests):
    def setUp(self):
        super(cuda_test, self).setUp()
        if not cv.cuda.getCudaEnabledDeviceCount():
            self.skipTest("No CUDA-capable device is detected")

    def test_cuda_upload_download(self):
        npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
        cuMat = cv.cuda_GpuMat()
        cuMat.upload(npMat)

        self.assertTrue(np.allclose(cuMat.download(), npMat))

    def test_cuda_interop(self):
        npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
        cuMat = cv.cuda_GpuMat()
        cuMat.upload(npMat)
        self.assertTrue(cuMat.cudaPtr() != 0)
        stream = cv.cuda_Stream()
        self.assertTrue(stream.cudaPtr() != 0)

if __name__ == '__main__':
    NewOpenCVTests.bootstrap()