File: test_texture_flow.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (47 lines) | stat: -rw-r--r-- 1,180 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/env python

'''
Texture flow direction estimation.

Sample shows how cv.cornerEigenValsAndVecs function can be used
to estimate image texture flow direction.
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv
import sys

from tests_common import NewOpenCVTests


class texture_flow_test(NewOpenCVTests):

    def test_texture_flow(self):

        img = self.get_sample('samples/data/chessboard.png')

        gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
        h, w = img.shape[:2]

        eigen = cv.cornerEigenValsAndVecs(gray, 5, 3)
        eigen = eigen.reshape(h, w, 3, 2)  # [[e1, e2], v1, v2]
        flow = eigen[:,:,2]

        d = 300
        eps = d / 30

        points =  np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)

        textureVectors = []
        for x, y in np.int32(points):
            textureVectors.append(np.int32(flow[y, x]*d))

        for i in range(len(textureVectors)):
            self.assertTrue(cv.norm(textureVectors[i], cv.NORM_L2) < eps
            or abs(cv.norm(textureVectors[i], cv.NORM_L2) - d) < eps)

if __name__ == '__main__':
    NewOpenCVTests.bootstrap()