File: calibrate.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (135 lines) | stat: -rwxr-xr-x 4,220 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python

'''
camera calibration for distorted images with chess board samples
reads distorted images, calculates the calibration and write undistorted images

usage:
    calibrate.py [--debug <output path>] [--square_size] [<image mask>]

default values:
    --debug:    ./output/
    --square_size: 1.0
    <image mask> defaults to ../data/left*.jpg
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

# local modules
from common import splitfn

# built-in modules
import os

def main():
    import sys
    import getopt
    from glob import glob

    args, img_mask = getopt.getopt(sys.argv[1:], '', ['debug=', 'square_size=', 'threads='])
    args = dict(args)
    args.setdefault('--debug', './output/')
    args.setdefault('--square_size', 1.0)
    args.setdefault('--threads', 4)
    if not img_mask:
        img_mask = '../data/left??.jpg'  # default
    else:
        img_mask = img_mask[0]

    img_names = glob(img_mask)
    debug_dir = args.get('--debug')
    if debug_dir and not os.path.isdir(debug_dir):
        os.mkdir(debug_dir)
    square_size = float(args.get('--square_size'))

    pattern_size = (9, 6)
    pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
    pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
    pattern_points *= square_size

    obj_points = []
    img_points = []
    h, w = cv.imread(img_names[0], cv.IMREAD_GRAYSCALE).shape[:2]  # TODO: use imquery call to retrieve results

    def processImage(fn):
        print('processing %s... ' % fn)
        img = cv.imread(fn, 0)
        if img is None:
            print("Failed to load", fn)
            return None

        assert w == img.shape[1] and h == img.shape[0], ("size: %d x %d ... " % (img.shape[1], img.shape[0]))
        found, corners = cv.findChessboardCorners(img, pattern_size)
        if found:
            term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
            cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)

        if debug_dir:
            vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
            cv.drawChessboardCorners(vis, pattern_size, corners, found)
            _path, name, _ext = splitfn(fn)
            outfile = os.path.join(debug_dir, name + '_chess.png')
            cv.imwrite(outfile, vis)

        if not found:
            print('chessboard not found')
            return None

        print('           %s... OK' % fn)
        return (corners.reshape(-1, 2), pattern_points)

    threads_num = int(args.get('--threads'))
    if threads_num <= 1:
        chessboards = [processImage(fn) for fn in img_names]
    else:
        print("Run with %d threads..." % threads_num)
        from multiprocessing.dummy import Pool as ThreadPool
        pool = ThreadPool(threads_num)
        chessboards = pool.map(processImage, img_names)

    chessboards = [x for x in chessboards if x is not None]
    for (corners, pattern_points) in chessboards:
        img_points.append(corners)
        obj_points.append(pattern_points)

    # calculate camera distortion
    rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None)

    print("\nRMS:", rms)
    print("camera matrix:\n", camera_matrix)
    print("distortion coefficients: ", dist_coefs.ravel())

    # undistort the image with the calibration
    print('')
    for fn in img_names if debug_dir else []:
        _path, name, _ext = splitfn(fn)
        img_found = os.path.join(debug_dir, name + '_chess.png')
        outfile = os.path.join(debug_dir, name + '_undistorted.png')

        img = cv.imread(img_found)
        if img is None:
            continue

        h, w = img.shape[:2]
        newcameramtx, roi = cv.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h))

        dst = cv.undistort(img, camera_matrix, dist_coefs, None, newcameramtx)

        # crop and save the image
        x, y, w, h = roi
        dst = dst[y:y+h, x:x+w]

        print('Undistorted image written to: %s' % outfile)
        cv.imwrite(outfile, dst)

    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()