File: houghcircles.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (48 lines) | stat: -rwxr-xr-x 1,255 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/python

'''
This example illustrates how to use cv.HoughCircles() function.

Usage:
    houghcircles.py [<image_name>]
    image argument defaults to board.jpg
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

import sys

def main():
    try:
        fn = sys.argv[1]
    except IndexError:
        fn = 'board.jpg'

    src = cv.imread(cv.samples.findFile(fn))
    img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    img = cv.medianBlur(img, 5)
    cimg = src.copy() # numpy function

    circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)

    if circles is not None: # Check if circles have been found and only then iterate over these and add them to the image
        _a, b, _c = circles.shape
        for i in range(b):
            cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv.LINE_AA)
            cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv.LINE_AA)  # draw center of circle

        cv.imshow("detected circles", cimg)

    cv.imshow("source", src)
    cv.waitKey(0)
    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()