File: houghlines.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (60 lines) | stat: -rwxr-xr-x 1,578 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/python

'''
This example illustrates how to use Hough Transform to find lines

Usage:
    houghlines.py [<image_name>]
    image argument defaults to pic1.png
'''

# Python 2/3 compatibility
from __future__ import print_function

import cv2 as cv
import numpy as np

import sys
import math

def main():
    try:
        fn = sys.argv[1]
    except IndexError:
        fn = 'pic1.png'

    src = cv.imread(cv.samples.findFile(fn))
    dst = cv.Canny(src, 50, 200)
    cdst = cv.cvtColor(dst, cv.COLOR_GRAY2BGR)

    if True: # HoughLinesP
        lines = cv.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)
        a, b, _c = lines.shape
        for i in range(a):
            cv.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv.LINE_AA)

    else:    # HoughLines
        lines = cv.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
        if lines is not None:
            a, b, _c = lines.shape
            for i in range(a):
                rho = lines[i][0][0]
                theta = lines[i][0][1]
                a = math.cos(theta)
                b = math.sin(theta)
                x0, y0 = a*rho, b*rho
                pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
                pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
                cv.line(cdst, pt1, pt2, (0, 0, 255), 3, cv.LINE_AA)

    cv.imshow("detected lines", cdst)

    cv.imshow("source", src)
    cv.waitKey(0)
    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()