File: peopledetect.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (76 lines) | stat: -rwxr-xr-x 2,066 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python

'''
example to detect upright people in images using HOG features

Usage:
    peopledetect.py <image_names>

Press any key to continue, ESC to stop.
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv


def inside(r, q):
    rx, ry, rw, rh = r
    qx, qy, qw, qh = q
    return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh


def draw_detections(img, rects, thickness = 1):
    for x, y, w, h in rects:
        # the HOG detector returns slightly larger rectangles than the real objects.
        # so we slightly shrink the rectangles to get a nicer output.
        pad_w, pad_h = int(0.15*w), int(0.05*h)
        cv.rectangle(img, (x+pad_w, y+pad_h), (x+w-pad_w, y+h-pad_h), (0, 255, 0), thickness)


def main():
    import sys
    from glob import glob
    import itertools as it

    hog = cv.HOGDescriptor()
    hog.setSVMDetector( cv.HOGDescriptor_getDefaultPeopleDetector() )

    default = [cv.samples.findFile('basketball2.png')] if len(sys.argv[1:]) == 0 else []

    for fn in it.chain(*map(glob, default + sys.argv[1:])):
        print(fn, ' - ',)
        try:
            img = cv.imread(fn)
            if img is None:
                print('Failed to load image file:', fn)
                continue
        except:
            print('loading error')
            continue

        found, _w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05)
        found_filtered = []
        for ri, r in enumerate(found):
            for qi, q in enumerate(found):
                if ri != qi and inside(r, q):
                    break
            else:
                found_filtered.append(r)
        draw_detections(img, found)
        draw_detections(img, found_filtered, 3)
        print('%d (%d) found' % (len(found_filtered), len(found)))
        cv.imshow('img', img)
        ch = cv.waitKey()
        if ch == 27:
            break

    print('Done')


if __name__ == '__main__':
    print(__doc__)
    main()
    cv.destroyAllWindows()