File: SURF_detection_Demo.py

package info (click to toggle)
opencv 4.5.1%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 268,248 kB
  • sloc: cpp: 969,170; xml: 682,525; python: 36,732; lisp: 30,170; java: 25,155; ansic: 7,927; javascript: 5,643; objc: 2,041; sh: 935; cs: 601; perl: 494; makefile: 145
file content (27 lines) | stat: -rw-r--r-- 847 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse

parser = argparse.ArgumentParser(description='Code for Feature Detection tutorial.')
parser.add_argument('--input', help='Path to input image.', default='box.png')
args = parser.parse_args()

src = cv.imread(cv.samples.findFile(args.input), cv.IMREAD_GRAYSCALE)
if src is None:
    print('Could not open or find the image:', args.input)
    exit(0)

#-- Step 1: Detect the keypoints using SURF Detector
minHessian = 400
detector = cv.xfeatures2d_SURF.create(hessianThreshold=minHessian)
keypoints = detector.detect(src)

#-- Draw keypoints
img_keypoints = np.empty((src.shape[0], src.shape[1], 3), dtype=np.uint8)
cv.drawKeypoints(src, keypoints, img_keypoints)

#-- Show detected (drawn) keypoints
cv.imshow('SURF Keypoints', img_keypoints)

cv.waitKey()