File: js_optical_flow_lucas_kanade.html

package info (click to toggle)
opencv 4.6.0%2Bdfsg-12
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 276,172 kB
  • sloc: cpp: 1,079,020; xml: 682,526; python: 43,885; lisp: 30,943; java: 25,642; ansic: 7,968; javascript: 5,956; objc: 2,039; sh: 1,017; cs: 601; perl: 494; makefile: 179
file content (190 lines) | stat: -rw-r--r-- 5,978 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Lucas-Kanade Optical Flow Example</title>
<link href="js_example_style.css" rel="stylesheet" type="text/css" />
</head>
<body>
<h2>Lucas-Kanade Optical Flow Example</h2>
<p>
    Click <b>Start/Stop</b> button to start or stop the video.<br>
    The <b>videoInput</b> is a &lt;video&gt; element used as input.
    The <b>canvasOutput</b> is a &lt;canvas&gt; element used as output.<br>
    To decide the points, we use <b>cv.goodFeaturesToTrack()</b>. We take the first frame, detect some Shi-Tomasi corner points in it, then we iteratively track those points using <b>cv.calcOpticalFlowPyrLK</b>.<br>
    The code of &lt;textarea&gt; will be executed when video is started.<br>
    You can modify the code to investigate more.
</p>
<div>
<div class="control"><button id="startAndStop" disabled>Start</button></div>
<textarea class="code" rows="29" cols="100" id="codeEditor" spellcheck="false">
</textarea>
</div>
<p class="err" id="errorMessage"></p>
<div>
    <table cellpadding="0" cellspacing="0" width="0" border="0">
    <tr>
        <td>
            <video id="videoInput" width="320" height="240" muted></video>
        </td>
        <td>
            <canvas id="canvasOutput" width="320" height="240" ></canvas>
        </td>
        <td></td>
        <td></td>
    </tr>
    <tr>
        <td>
            <div class="caption">videoInput</div>
        </td>
        <td>
            <div class="caption">canvasOutput</div>
        </td>
        <td></td>
        <td></td>
    </tr>
    </table>
</div>
<script src="https://webrtc.github.io/adapter/adapter-5.0.4.js" type="text/javascript"></script>
<script src="utils.js" type="text/javascript"></script>
<script id="codeSnippet" type="text/code-snippet">
let video = document.getElementById('videoInput');
let cap = new cv.VideoCapture(video);

// parameters for ShiTomasi corner detection
let [maxCorners, qualityLevel, minDistance, blockSize] = [30, 0.3, 7, 7];

// parameters for lucas kanade optical flow
let winSize = new cv.Size(15, 15);
let maxLevel = 2;
let criteria = new cv.TermCriteria(cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03);

// create some random colors
let color = [];
for (let i = 0; i < maxCorners; i++) {
    color.push(new cv.Scalar(parseInt(Math.random()*255), parseInt(Math.random()*255),
                             parseInt(Math.random()*255), 255));
}

// take first frame and find corners in it
let oldFrame = new cv.Mat(video.height, video.width, cv.CV_8UC4);
cap.read(oldFrame);
let oldGray = new cv.Mat();
cv.cvtColor(oldFrame, oldGray, cv.COLOR_RGB2GRAY);
let p0 = new cv.Mat();
let none = new cv.Mat();
cv.goodFeaturesToTrack(oldGray, p0, maxCorners, qualityLevel, minDistance, none, blockSize);

// Create a mask image for drawing purposes
let zeroEle = new cv.Scalar(0, 0, 0, 255);
let mask = new cv.Mat(oldFrame.rows, oldFrame.cols, oldFrame.type(), zeroEle);

let frame = new cv.Mat(video.height, video.width, cv.CV_8UC4);
let frameGray = new cv.Mat();
let p1 = new cv.Mat();
let st = new cv.Mat();
let err = new cv.Mat();

const FPS = 30;
function processVideo() {
    try {
        if (!streaming) {
            // clean and stop.
            frame.delete(); oldGray.delete(); p0.delete(); p1.delete(); err.delete(); mask.delete();
            return;
        }
        let begin = Date.now();

        // start processing.
        cap.read(frame);
        cv.cvtColor(frame, frameGray, cv.COLOR_RGBA2GRAY);

        // calculate optical flow
        cv.calcOpticalFlowPyrLK(oldGray, frameGray, p0, p1, st, err, winSize, maxLevel, criteria);

        // select good points
        let goodNew = [];
        let goodOld = [];
        for (let i = 0; i < st.rows; i++) {
            if (st.data[i] === 1) {
                goodNew.push(new cv.Point(p1.data32F[i*2], p1.data32F[i*2+1]));
                goodOld.push(new cv.Point(p0.data32F[i*2], p0.data32F[i*2+1]));
            }
        }

        // draw the tracks
        for (let i = 0; i < goodNew.length; i++) {
            cv.line(mask, goodNew[i], goodOld[i], color[i], 2);
            cv.circle(frame, goodNew[i], 5, color[i], -1);
        }
        cv.add(frame, mask, frame);

        cv.imshow('canvasOutput', frame);

        // now update the previous frame and previous points
        frameGray.copyTo(oldGray);
        p0.delete(); p0 = null;
        p0 = new cv.Mat(goodNew.length, 1, cv.CV_32FC2);
        for (let i = 0; i < goodNew.length; i++) {
            p0.data32F[i*2] = goodNew[i].x;
            p0.data32F[i*2+1] = goodNew[i].y;
        }

        // schedule the next one.
        let delay = 1000/FPS - (Date.now() - begin);
        setTimeout(processVideo, delay);
    } catch (err) {
        utils.printError(err);
    }
};

// schedule the first one.
setTimeout(processVideo, 0);
</script>
<script type="text/javascript">
let utils = new Utils('errorMessage');

utils.loadCode('codeSnippet', 'codeEditor');

let streaming = false;
let videoInput = document.getElementById('videoInput');
let startAndStop = document.getElementById('startAndStop');

startAndStop.addEventListener('click', () => {
    if (!streaming) {
        utils.clearError();
        videoInput.play().then(() => {
            onVideoStarted();
        });
    } else {
        videoInput.pause();
        videoInput.currentTime = 0;
        onVideoStopped();
    }
});

function onVideoStarted() {
    streaming = true;
    startAndStop.innerText = 'Stop';
    videoInput.height = videoInput.width * (videoInput.videoHeight / videoInput.videoWidth);
    utils.executeCode('codeEditor');
}

function onVideoStopped() {
    streaming = false;
    startAndStop.innerText = 'Start';
}

videoInput.addEventListener('ended', () => {
    onVideoStopped();
});

utils.loadOpenCv(() => {
    videoInput.addEventListener('canplay', () => {
        startAndStop.removeAttribute('disabled');
    });
    videoInput.src = 'box.mp4';
});
</script>
</body>
</html>