1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
# DNN-based Face Detection And Recognition {#tutorial_dnn_face}
@tableofcontents
@prev_tutorial{tutorial_dnn_text_spotting}
@next_tutorial{pytorch_cls_tutorial_dnn_conversion}
| | |
| -: | :- |
| Original Author | Chengrui Wang, Yuantao Feng |
| Compatibility | OpenCV >= 4.5.4 |
## Introduction
In this section, we introduce cv::FaceDetectorYN class for face detection and cv::FaceRecognizerSF class for face recognition.
## Models
There are two models (ONNX format) pre-trained and required for this module:
- [Face Detection](https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet):
- Size: 338KB
- Results on WIDER Face Val set: 0.830(easy), 0.824(medium), 0.708(hard)
- [Face Recognition](https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface)
- Size: 36.9MB
- Results:
| Database | Accuracy | Threshold (normL2) | Threshold (cosine) |
| -------- | -------- | ------------------ | ------------------ |
| LFW | 99.60% | 1.128 | 0.363 |
| CALFW | 93.95% | 1.149 | 0.340 |
| CPLFW | 91.05% | 1.204 | 0.275 |
| AgeDB-30 | 94.90% | 1.202 | 0.277 |
| CFP-FP | 94.80% | 1.253 | 0.212 |
## Code
@add_toggle_cpp
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/4.x/samples/dnn/face_detect.cpp)
- **Code at glance:**
@include samples/dnn/face_detect.cpp
@end_toggle
@add_toggle_python
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/4.x/samples/dnn/face_detect.py)
- **Code at glance:**
@include samples/dnn/face_detect.py
@end_toggle
Explanation
-----------
@add_toggle_cpp
@snippet dnn/face_detect.cpp initialize_FaceDetectorYN
@snippet dnn/face_detect.cpp inference
@end_toggle
@add_toggle_python
@snippet dnn/face_detect.py initialize_FaceDetectorYN
@snippet dnn/face_detect.py inference
@end_toggle
The detection output `faces` is a two-dimension array of type CV_32F, whose rows are the detected face instances, columns are the location of a face and 5 facial landmarks. The format of each row is as follows:
```
x1, y1, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm
```
, where `x1, y1, w, h` are the top-left coordinates, width and height of the face bounding box, `{x, y}_{re, le, nt, rcm, lcm}` stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively.
### Face Recognition
Following Face Detection, run codes below to extract face feature from facial image.
@add_toggle_cpp
@snippet dnn/face_detect.cpp initialize_FaceRecognizerSF
@snippet dnn/face_detect.cpp facerecognizer
@end_toggle
@add_toggle_python
@snippet dnn/face_detect.py initialize_FaceRecognizerSF
@snippet dnn/face_detect.py facerecognizer
@end_toggle
After obtaining face features *feature1* and *feature2* of two facial images, run codes below to calculate the identity discrepancy between the two faces.
@add_toggle_cpp
@snippet dnn/face_detect.cpp match
@end_toggle
@add_toggle_python
@snippet dnn/face_detect.py match
@end_toggle
For example, two faces have same identity if the cosine distance is greater than or equal to 0.363, or the normL2 distance is less than or equal to 1.128.
## Reference:
- https://github.com/ShiqiYu/libfacedetection
- https://github.com/ShiqiYu/libfacedetection.train
- https://github.com/zhongyy/SFace
## Acknowledgement
Thanks [Professor Shiqi Yu](https://github.com/ShiqiYu/) and [Yuantao Feng](https://github.com/fengyuentau) for training and providing the face detection model.
Thanks [Professor Deng](http://www.whdeng.cn/), [PhD Candidate Zhong](https://github.com/zhongyy/) and [Master Candidate Wang](https://github.com/crywang/) for training and providing the face recognition model.
|